AGENT++

An Object Oriented
Application Programmers Interface

for Development of SNMP Agents
Using C++ and SNMP++

Version 2.1

Frank Fock

Contents

1 Introduction

1.21
1.2.2
1.2.3
1.2.4

1.2 Objectives of AGENT++

Easeof Use
Rapidity of Implementation
Extensibility
Portability

2 An Introductory Example

2.1 Explanation of Introductory Example

3 AGENT-++ Features

4 An Introduction to SNMP4+4

5 The AGENT++4 Classes

51 MibClass
5.1.1 Mib Class Member Functions
5.2 MibEntry Class
5.2.1 MibEntry Class Member Functions . . .
5.3 MibLeaf Class
5.3.1 MibLeaf Member Functions
5.4 MibTableRow Class
5.4.1 MibTableRow Class Member Functions .
5.5 MibTable Class
5.5.1 MibTable Member Functions
5.6 MibProxy Class
5.6.1 MibProxy Class Member Functions . . .
5.7 MibGroup Class
5.7.1 MibGroup Class Member Functions . . .
5.8 snmpRowStatus Class
5.8.1 snmpRowStatus Class Member Functions

Bibliography

10

11
11
14
15
15
18
18
22
22
22
23
29
29
32
32
32
33

34

1 Introduction

Various Simple Network Management Protocol (SNMP) Application Programmers Inter-
faces (APIs) exist which allow the creation of network management applications. SNMP++
is such an API but in contrast to many others it offers the advantages of object oriented
programming. An object oriented approach to SNMP network programming provides
many benefits including ease of use, safety, portability and extensibility. The SNNP++
source code (C++) is freely available from the Hewlett Packard Company WWW server!
as long as their copyright notice is preserved. SNMP++ is designed to support the de-
velopment of SNMP manager entities in the first place. AGENT++ extends the basic
concepts of SNMP++ to support the development of SNMP agents and SNMP entities
playing a dual role.

If you are looking for an introduction to SNMP and SNMP MIBs, I recommend
[Perkins97].

1.1 What Is AGENTH++7?

AGENT++ is a set of C++ classes which provides a complete protocol engine and dis-
patch table for the development of SNMP agents. Besides the AGENT++ API provides
various C++ classes which implement base classes for scalar and table SNMP managed
objects that can be customised by derivation. An additional class supports the develop-
ment of proxy agents. AGENT-++ is based on an extended version of SNMP++ 2.5f.
For convenience AGENT++ includes ready to use classes which implement the MIB II"s
system and snmp group.

1.2 Objectives of AGENTH+
1.2.1 Ease of Use

AGENT++ has been designed to make the development of simple network management
protocol agents simple. Using the AGENT++ API the programmer does not need to be
concerned with details about SNMP protocol engine and dispatch table. The programmer
can focus on implementing method routines and management instrumentation. The OO
approach encapsulates and hides many internals like management of incoming SNMP
requests, looking up mappings in the dispatch table, calling the appropriate method
routines, sending responses and traps. Details concerning the simple network protocol
itself are encapsulated by SNMP-++ (see the SNMP++ specification for details).

'http://rosegarden.external.hp.com/snmp++

4 2 AN INTRODUCTORY EXAMPLE

1.2.2 Rapidity of Implementation

The AGENT++ API undertakes nearly any task of a SNMP agent implementation that
can be generalised. Therefore the implementation of SNMP agents with AGENT++ saves
a lot of time and money. The OO approach of AGENT++ supports the generalisation of
the key tasks of a SNMP agent efficiently without making the API difficult to use.

1.2.3 Extensibility

Extensions to the AGENT+4 API can be done in many ways. This includes supporting
new versions of SNMP (e.g. version 3) and their administrative framework, base classes
for additional types of managed objects, and adding new features. Through C+-+ class
derivation, users of AGENT++ can inherit what they like and override what they wish
to overload:

e A key concept of AGENT-++ is the sub-classing of managed object base classes by
the user. The user overrides virtual member functions of these base classes when she
or he needs a specialisation to the default behaviour of the respective class member
function.

1.2.4 Portability

AGENT++ offers a maximum of portability due to the use of pure C++ without any
operating system specific calls. So its only portability limitation is SNMP++ which is
available for many Unix derivates and Microsoft Windows. Nevertheless if you want
to implement a multi-threaded SNMP agent AGENT++ is limited to POSIX threads
compatible UNIX operating systems, e.g. Solaris, Digital Unix, and Linux. The public
interface of the AGENT++ API remains the same across any platform. A programmer
who codes to AGENT++ does not have to make changes to move it to another platform.

2 An Introductory Example

To get an idea of what benefits AGENT++ offers to a SNMP agent programmer, here
is an example that shows the implementation of an agent for a coffee-percolator. For
now, a single scalar managed object which represents the temperature of the coffee in the
coffee-pot will do. Additional managed objects e.g. those that demonstrate how SNMP
tables can be implemented with AGENT++4 will follow later on.

2.1 Explanation of Introductory Example 5

2.1 Explanation of Introductory Example

The main procedure of an AGENT++ SNMP agent (shown in figure 1) can be divided
into three sections:

1. Setting up the SNMP protocol engine

First of all an extended version of the SNMP++ Snmp class (Snmpx) is used to create
a SNMP session that will be used for incoming SNMP requests. The example uses
the standard SNMP port 161 to listen on, although any (available) UDP port can
be chosen. If the session has been created successfully the session object snmp has
to be registered to the static class RequestlList which queues and manages SNMP
requests.

2. Create and register the MIB objects

The mib object is created which represents the conceptual database containing the
management information of the agent (Management Information Base). Then all
objects that should be supported by the agent s MIB are added. Each such object
contains one or more instances of managed objects related to a subtree of the man-
agement information tree. The classes systemGroup, snmpGroup, and trapDestGroup
are provided by AGENT++, which include the managed objects of the MIB II’s
system and snmp group, as well as managed objects needed for trap destination
registration.

3. Loop forever for incoming SNMP requests

The receive method of the RequestList object is used to wait for incoming SNMP
request. The method takes as argument the maximum time to wait for a request in
seconds. Note: If the agent uses multi-threading the RequestList can contain more
than one request. A SNMP request is processed through the process_request method
which propagates each sub-request to the appropriate MIB object.

How a simple managed object like coffeeTemperature can be implemented using the
AGENT++ API is shown by figures 2 and 3. The class coffeeTemperature is derived from
MibLeaf which is itself derived from MibEntry. MibLeaf is the base class for all instances
of managed objects that are leafs of the management information tree, also called scalar
managed objects. The constructor of coffeeTemperature calls the constructor of its base
class MiblLeaf with three arguments:

e the object identifier of the managed object s instance the MIB object is representing.

e the access rights to be used (coffee Temperature is read only)

6 2 AN INTRODUCTORY EXAMPLE

main (int argc, char* argv[])
{
int status;
Snmpx snmp(status, 161); // create SNMP++ session

if (status != SNMP_CLASS_SUCCESS) { // if fail print error
cout << snmp.error_msg(status); // message
exit(1);
}
RequestList: :set_snmp(&snmp) ; // register the Snmpx object to
// be used by the global RequestList for incoming SNMP requests

Mib mib; // create the agents MIB
mib.add (new systemGroup()); // add sysGroup and snmpGroup
mib.add (new snmpGroup()); // (provided with AGENT++) to mib

mib.add(new coffeeTemperature()); // add temperature MO
mib.add(new coffeeSchedulingTable()); // add scheduling table

Request* req; // pointer to an incoming SNMP request
for (;;) { // loop forever (agent is an daemon)
// wait for incoming request max 120 sec
// and then just loop once

req = RequestList::receive(120);

if (req) mib.process_request(req); // process the request

Figure 1: An example for a main routine of a SNMP agent to manage a coffee-percolator.

e the syntax in form of a from SnmpSyntax derived object that represents an object
oriented view of Structure of Management Information (SMI) Abstract Syntax No-

tation (ASN.1) data types which are used by SNMP (see figure 4 or the SNMP+-+
specification for sub-classes of SnmpSyntax).

Because coffeeTemperature has not a constant value, we need to redefine the virtual
member function get_request inherited from MiblLeaf to get the actual temperature of
the coffee from the management instrumentation. To translate between the different
management information representations used by the management instrumentation (tem-
perature measured in Fahrenheit) and the SNMP MIB definition (Celsius) the method
get_coffee_temperature is used.

The coffeeTemperature::get_request method first gets the actual temperature and stores
it in value which is a pointer to the SnmpSyntax object that has been given as third
parameter to the MibLeaf constructor. Then MibLeaf::get_request is called to actually
answer the SNMP request using the value of value. That s all!l Everything else is done
by AGENT++.

class coffeeTemperature: public MibLeaf {

public:

coffeeTemperature() ;

void get_request(Request*, int);
private:

int get_coffee_temperature();
s

Figure 2: Class definition for the managed object representing the coffee temperature

3 AGENT4++ Features

e Power and Flexibility

AGENT++ (in conjunction with SNMP++) provides a power and flexibility which
would otherwise be difficult to implement and manage. A programmer using the
AGENT++ API can concentrate his affords on the management instrumentation
and method routines. He or she needs nothing to know about a SNMP protocol
engine or dispatch table. Even the tricky task to manage dynamic SNMP tables
that follow the SMIv2 row status textual convention is undertaken by AGENT+4+.

8 3 AGENT++ FEATURES

coffeeTemperature: :coffeeTemperature() :
MibLeaf("1.3.6.1.3.100.2.1.0", READONLY, new SnmpInt32(0)) { }

int coffeeTemperature::get_coffee_temperature()

{
// (CoffeePercolator is assumed as a static class and contains
// the management instrumentation for the coffee-percolator)
// get temperature from instrumentation and
// convert it from Fahrenheit to Celsius
return (CoffeePerculator::get_temperature()-32)*5/9;

}

void coffeePercolator::get_request(Request* req, int ind)

{
// store the actual temperature in value (derived from MibLeaf)
* ((SnmpInt32*)value) = (long)get_coffee_temperature();

MibLeaf: :get_request(req, ind); // use default behaviour of

// scalar managed objects for get_requests which answers the
// snmp get/getnext request using value

Figure 3: Class implementation of the managed object representing the coffee temperature

e Multi-Threaded Request Processing (New!)

A MIB object “s method routines and thus its management instrumentation can run
in an extra thread (pseudo) parallel executed to the agent s main process. So time
intensive calculations or information retrievals do not block the agent. This could
increase the availability and reliability of the agent.

Version 1.x of AGENT++ supported multi-processing. The use of multi-processing
has had the following disadvantages:

— Multi-processing needs a significant larger amount of system resources (i.e.,
memory and CPU) than multi-threading.

— Processes need to communicate with each other. For this purpose System V
Inter Process Communication (IPC) has been used by AGENT++ 1.x. A lot
of coding had to be done to get this communication working, nevertheless the
IPC could not completely hidden. As a result, the user interface was not as
simple as it could have been.

Consequently, AGENT++v2.0s user interface, as well as its code, is much
easier to understand.

— Multi-threading offers a (pseudo) parallel working management instrumenta-
tion access to the memory of the whole agent and its MIB. A child process
has only a copy of the agents memory at the child’s birth time, so it cannot
recognise intermediate updates to the agent s MIB.

What is new: Agent++ Version 2.0 and greater supports the execution of the
management instrumentation? as multiple threads. Each SNMP request can be
separately executed as a thread. For each instance of a MIB object (MibLeaf or
MibTable) there can be only a single thread executing one of its method routines
at the same time. Thus, you do not have to worry about synchronising memory
reads/writes within your instrumentation methods.

As multi-processing is no longer supported, the methods MibEntry::update, MibEn-
try::result, Mib::busy, and Mib:process_updates known from version 1.0x have been
removed.

e MIB II’'s System and SNMP Group

For the programmer ’s convenience an implementation of the MIB II s system and
snmp group is provided with AGENT++.

2The management instrumentation is represented by the ::get_request(..), ::commit_set_request(..), etc.
methods of MIB objects.

10 4 AN INTRODUCTION TO SNMP++

e Proxy Support for Arbitrary Management Information Subtrees

An arbitrary subtree of another agent’s management information tree can be in-
cluded in an agent s MIB simply be give the other agent s management transport
address and the subtree “s object identifier when defining such an proxy MIB object.
As long as the proxy subtrees are disjunctive any combination of such proxy MIB
objects can be used at the same time with local MIB objects.

e Support for Persistent MIB Objects

Scalar and table managed objects can be saved to disk and reloaded from it. This
enables a user to easily save management information persistently.

e Support for SNMPv1 and SNMPv2c

SNMP++ supports SNMPv1l and SNMPv2c thus AGENT++ likewise supports
both versions. A support for SNMPv3 and its user and view based administrative
model will follow in the near future.

e Detailed Logging

AGENT++ has a detailed logging mechanism supporting five log classes (error,
warning, info, debug, event) with each supporting up to 16 levels. This makes
debugging of your agent very easy and gives you full control about what is happening
when your agent is running.

4 An Introduction to SNMP-+}+4

SNMP++ is a set of C++ classes which provide SNMP services to a network management
application developer. An overview over these C++ classes gives figure 4. For further
documentation about SNMP++ please read the corresponding specification which is freely
available® from the Hewlett Packard company.

AGENT++ comes with a set of subclasses for some classes of SNMP++ which are
shown in figure 4. Those subclasses provide extended functionality to their SNMP-++
base classes, so their class names contain an appended “x”. Significant extensions and
improvements have been made to Snmp by Snmpx, to Vb by Vbx, and to Oid by Oidx.

11

Vb SnmpSyntax
Snmp %’ ‘<>’—/
+1
sget
set
:get-next
:get-bulk ‘
::notify_reg ‘ ‘
::notify_unreg Oid Address OctetString Int32 Uint32 Counter64
IpAddress IpxAddress MacAddress GenAddress TimeTicks Gauge32 Counter32

+1

Target Pdu
UdpAddress IpxSockAddress

CTarget

Figure 4: Object Modelling Technique (OMT) view of the SNMP++ Framework
[Mellquist96]

5 The AGENT4+4 Classes

5.1 Mib Class

The AGENT++ Mib class represents a central part of any agent - the Management
Information Base (MIB). The MIB of a SNMP agent is a conceptual database rather
than a real database. An Agent has exactly one MIB, thus the Mib class is a singleton.
Mib has three functional areas:

1. Registration of MIB objects

Use the add member function to add a MIB object (any C++ object derived from
MibEntry) to the agent s MIB. Use the remove member function to remove a MIB
object from the agent “s MIB. Both functions can be used while the agent is running.

2. Receive and Process SNMP Requests

Incoming SNMP requests are accepted by using the receive member function. The
receive function waits for such a request until a given timeout is reached. The
timeout is given in seconds and if it is zero receive looks for a pending request and
returns it immediately or if is not such a request receive returns the null pointer.

3http:/ /rosegarden.external.hp.com

12 5 THE AGENT++ CLASSES
Mib RequestList " Request
ThreadManager
1+ ’—i =
MibEntry
1+
MibLeaf] MibTableRow ; MibTable MibProxy MibGroup
snmpRowStatus

Figure 5: Object Modelling Technique (OMT) view of the AGENT++ Framework

5.1 Mib Class 13

A request is processed by the agent by calling the process_request member function
of the agent s MIB. Depending of the request type the get_request, get_next_request,
or prepare_set_request, commit_set_request, undo_set_request, and cleanup_set_request
of each target MIB object is called. Because the targets of SNMP requests are man-
aged objects, but the MIB contains only MIB objects (see figure 6) the mib object
determines which MIB object manages which managed object. So, process_request
calls the appropriate of the above mentioned functions for each target managed
object.

When the agent ist multi-threaded the method routines called by a request are
executed within the same thread. This thread is then different from the master
thread accepting new request.

O Logical MIB Nodes
Logical nodes are not represented by an Agent++ MIB.

® MIB Entry
Each MIB entry is reponsible for a whole subtree of a MIB or a single
instance of a manged object. In the latter case the MIB entry is
called MIB leaf object.

A Group of Managed Objects
If the group is a SNMP table each instance of its managed objects
is represented by a MIB leaf object.

Figure 6: Example of an AGENT++ Mib Structure

The structure of an AGENT++ MIB slightly differs from the corresponding SNMP
MIB structure. An Example of an AGENT++ MIB structure shows figure 6. Generally

14 5 THE AGENT++ CLASSES

managed objects with SNMP syntax NO-ACCESS contain no management information
and are therefore not represented by AGENT++ MIB objects. These managed objects
are logical nodes of the management information tree and can not be instantiated. All
instances of SNMP managed objects are represented by MIB leaf objects (derived from
MibLeaf).

To concentrate the management of a whole management information subtree in a
single MIB object the managed object at the root of the subtree is represented by a
special MIB object. This MIB object is then responsible to process SNMP requests for
all the instances of managed objects within its subtree. This may be done by propagating
the requests to the appropriate MIB leaf object (see MibTable class description in 5.5),
but the MIB object also may answer such a request by itself.

An AGENT++ MIB thus contains two kinds of MIB objects:

1. MIB leaf objects, which represents a single instance of a managed object, and

2. MIB objects, which are responsible for the managed objects of a whole management
information subtree to whom they are the root.

To propagate a GET-NEXT request to the right MIB object the mib class has to know
which is actually the last managed object instance managed by a particular MIB object.
Therefore each MibEntry has the member function max_key that should return the object
identifier of that instance. For example: the max_key function of MibLeaf objects returns
its own object id, the max_key function of MibTable objects return the oid of the last
object in its table. When you create your own MIB object class do not forget to override
the virtual member function max_key!

5.1.1 Mib Class Member Functions
5.1.1.1 Constructors
e Mib::Mib()
Construct an empty MIB - persistent objects will be stored in “config/”.

e Mib::Mib(const char* path)
Construct an empty MIB - persistent objects will be stored in path.
5.1.1.2 Destructor

e Mib::"Mib()
Destroy the MIB and all contained objects.

5.2 MibEntry Class 15

5.1.1.3 Configuration
e static const char* Mib::get_persistent_objects_path()
Return the path persistent MIB objects are saved to and loaded from.
5.1.1.4 Registration of MIB Objects

e Mib::add(MibEntry* obj)
Add the MIB entry obj to the MIB.

e Mib::remove(Oidx* oid)
Remove the MIB object with object identifier oid from the MIB.
5.1.1.5 Request Processing

e Mib::process_request(Request* req)

Process the request req. If multi-threading is enabled the request is processed asyn-
chronously.

5.1.1.6 Inherited Member Functions

e Request* RequestList::receive(int sec)

Wait (block) for the next incoming SNMP request and return it. If there is no such
request within the next sec seconds return NULL.

e void RequestList::set_snmp(Snmpx* snmp)

Register snmp to be the SNMP session that listens on incoming requests.

5.2 MibEntry Class
Any AGENT-++ MIB object class has to be derived from the abstract MibEntry class.

5.2.1 MibEntry Class Member Functions

5.2.1.1 Constructors

e MibEntry::MibEntry()
Construct an empty MIB object.

16 5 THE AGENT++ CLASSES

e MibEntry::MibEntry(const Oidx& oid, mib_access access)

Construct an empty MIB object with object id oid and access rights access.

e MibEntry::MibEntry(const MibEntry& other)

Construct a MIB object from another, copy constructor.

5.2.1.2 Destructor

e MibEntry::"MibEntry()
Destroy the MIB object.

5.2.1.3 Object Handling

e mib_type MibEntry::type()
Return the type of the MIB object.

e MibEntry* MibEntry::clone()
Return a pointer to a copy of the MIB object.

5.2.1.4 Request Processing

e void MibEntry::get_request(Request* req, int ind)
Perform the GET operation requested by the sub-request of req with index ind.
When this MIB object is “multi-threaded” this method is executed as thread.
e void MibEntry::get_next_request(Request* req, int ind)
Perform the GETNEXT operation requested by the sub-request of req with index
ind. When this MIB object is “multi-threaded” this method is executed as thread.
e int MibEntry::prepare_set_request(Request* req, int ind)

Test if the SET operation requested by sub-request of req with index ind could
be executed. If so return SNMP_ERROR_SUCCESS and prepare the operation (if
needed), otherwise return the appropriate SNMP++ error code.

5.2 MibEntry Class 17

e int MibEntry::commit_set_request(Request* req, int ind)
Commit the prepared SET operation requested by the sub-request of req with
index ind. Returns SNMP_ERROR_SUCCESS on success and SNMP_ERROR._-
COMMITFAIL on failure.

e int MibEntry::undo_set_request(Request* req, int ind)
Undo the changes by a (failed) commit_set_request operation executed to process
the sub-request of req with index ind. Returns SNMP_ERROR_SUCCESS on succes
and SNMP_ERROR_UNDO_FAIL on failure.

e void MibEntry::cleanup_set_request(Request* req, int ind)

Release the resources allocated for undoing the prepare/commit of sub-request req
with index ind.

5.2.1.5 MIB Object Communication The following methods can be used to automatically
notify MIB objects of a change in the management information of another MIB object.

e MibEntry::add_change_notification(MibEntry* entry)
Register MIB object entry to be notified of changes in the management information of MibEntry.

e void MibEntry::change_notification(const Oidx& oid, mib_change type)

This method of a MIB object is automatically called if the object has been registered for notifica-
tions with add_change_notification and the management information of the instance identified by
oid has changed in a way indicated by type.

5.2.1.6 Input & Output

e void MibEntry::save_to_file(const char* path)
Save the management information contained in MibEntry (if there is any) to the file
specified by path.

e void MibEntry::load_from file(const char* path)

Try to load management information into MibEntry that has been formerly saved
by MibEntry::save_to_file into the file path. If the file cannot be found or is corrupt
the actual management information of MibEntry will not be changed.

5.2.1.7 Miscellaneous

e Oidx* MibEntry::key()
Return a pointer to the object identifier of MibEntry.

18 5 THE AGENT++ CLASSES

e Oidx* MibEntry::max_key()

Return a pointer to an oid representing the last managed object instance MibEntry
is managing.

e mib_access MibEntry::get access()

Return the maximum access rights of MibEntry.

5.3 MibLeaf Class

Generally the MibLeaf class represents an instance of a managed object, but it also can
represent a columnar object of a SNMP table. A columnar object defines the behaviour
of the managed object instances in a particular column of a SNMP table. The columnar
object itself is not accessible in contrast to the instances derived from it (see section 5.5
for details).

MibLeaf is a sub-class of the abstract MibEntry class. As MibLeaf represents a managed
object instance a MibLeaf object contains management information. So each MiblLeaf
object contains a pointer value to that management information which can be any object
derived from SnmpSyntax.

5.3.1 MibLeaf Member Functions

5.3.1.1 Constructors

e MibLeaf::MibLeaf()
Construct an empty MIB leaf object.

e MibLeaf::MibLeaf(const Oidx& oid, mib_access access, SnmpSyntax* val)

Construct a MIB leaf object with object id oid and access rights access. The MIB leaf
object “s management information will be stored in the SnmpSyntax object referenced
by val. This reference will be stored in the MibLeaf::value variable.

e MibLeaf::MibLeaf(const Oidx& oid, mib_access access, SnmpSyntax* val,
boolean has_default)

Construct a MIB leaf object with object id oid and access rights access. The MIB leaf
object “s management information will be stored in the SnmpSyntax object referenced
by val. If has_default is true and if the MibLeaf object represents a columnar object
of a SNMP table the initial value of the object referenced by val will be the default
value for instances of that columnar object. The reference val will be stored in the
MibLeaf::value variable.

5.3 MibLeaf Class 19

MibLeaf::MibLeaf(const MibEntry& other)

Construct a MIB leaf object from another, copy constructor.

5.3.1.2 Destructor

MibLeaf::"MibLeaf()
Destroy the MIB leaf object.

5.3.1.3 Overloaded Member Functions

mib_type MibLeaf::type()
Return LEAF as type of the MIB object.

MibEntry* MibLeaf::clone()

Return a pointer to a copy of the MIB leaf object. Attention! You have to refine
the clone() method in each subclass of MiblLeaf especially if its instances shall be
used as objects within a MibTable. Be sure you create an instance of your subclass
and return it as MibEntry*. Otherwise the method routines of your subclass are
not called (instead the MibLeaf::get _request(..), MibLeaf::commit_set_request(..), etc.
methods are called) when used in MibTable objects.

void MibLeaf::get _request(Request* req, int ind)

Perform the GET operation requested by the sub-request of req with index ind by
returning the management information referenced by MibLeaf::value.

void MibEntry::get_next_request(Request* req, int ind)

Perform the GETNEXT operation requested by the sub-request of req with index
ind by returning the management information referenced by MibLeaf::value.

int MibLeaf::prepare_set_request(Request* req, int ind)

If the maximum access right of MibLeaf is at least READWRITE and MibLeaf::value_ok
returns true for the value to be set, then return SNMP_ERROR_SUCCESS, otherwise
return an appropriate SNMP++ error code.

int MibLeaf::commit_set_request(Request* req, int ind)

Commit the prepared SET operation requested by the sub-request of req with in-
dex ind by setting the SnmpSyntax object referenced by MibLeaf::value to its new
value and saving its old value. Returns SNMP_ERROR_SUCCESS on success and
SNMP_ERROR_-COMMITFAIL on failure.

20 5 THE AGENT++ CLASSES

e int MibEntry::undo_set_request(Request* req, int ind)

Undo the changes by a (failed) commit_set_request operation executed to process the
sub-request of req with index ind by setting the SnmpSyntax object referenced by
MibLeaf::value to its old value. Returns SNMP_ERROR_SUCCESS on succes and
SNMP_ERROR_UNDO_FAIL on failure.

e void MibEntry::cleanup_set_request(Request* req, int ind)

Free the saved old value of MibLeaf::value allocated for undoing the prepare/commit
of sub-request req with index ind.

e MibLeaf::add_change_notification(MibEntry* entry)
See 5.2.1.5.

e void MibLeaf::change_notification(const Oidx& oid, mib_change type)

See 5.2.1.5.

e void MibLeaf::save to_file(const char* path)
See 5.2.1.6

e void MibLeaf::load_from_file(const char* path)
See 5.2.1.6

e Oidx* MibLeaf::key()
Return a pointer to the object identifier of MibLeaf.

e Oidx* MibLeaf::max_key()
Return a pointer to the object identifier of MibLeaf.

e mib_access MibLeaf::get_access()

Return the maximum access rights of MibLeaf.

5.3.1.4 Value Manipulation

e Vbx MibLeaf::get value()

Return a Vbx object containing the MibLeaf "s object identifier and value (a copy of
the SnmpSyntax object referenced by MibLeaf::value).

5.3 MibLeaf Class 21

e int MibLeaf::set_value(const Vbx& vb)

Set the object referenced by MibLeaf::value to the value portion of vb if the value
types are compatible and the object identifier of vb and MibLeaf are equal. If
MibLeaf::value can be set return SNMP_ERROR_SUCCESS, otherwise an appropriate
SNMP++ error code.

e void MibLeaf::replace_value(SnmpSyntax* val)

Delete the SnmpSyntax object referenced by MibLeaf::value and set the reference to
the object referenced by val.

5.3.1.5 Request Processing
e boolean MibLeaf::value_ok(const Vbx& vb)

Return true if the value portion of vb can be accepted as the new value for the
MibLeaf s management information. The default implementation of the value_ok
member function MibLeaf offers always returns true. Override this function in your
own sub-class of MibLeaf if do not you want any value to be accepted.

Note: value_ok is called by MiblLeaf::prepare_set_request to check if a SNMP SET
operation can be executed.
e void MibLeaf::set(const Vbx& vb)

Set the management information of MibLeaf to the value portion of vb. The default
implementation of set simply calls set_value. Override the set function if you want
your sub-class of MibLeaf to perform additional or other actions.

Note: set is called by MibLeaf::commit_set_request to set the MibLeaf "s management
information to its new value.
e int MibLeaf::unset()

Set the management information of MiblLeaf stored in MibLeaf::value to its old
value stored in MibLeaf::undo. Returns SNMP_ERROR_SUCCESS on success and
SNMP_ERROR_UNDO_FAIL on failure.

Note: unset is called by MibLeaf::undo_set_request to set the MibLeaf "s management
information to its old value.

5.3.1.6 Miscellaneous

e MibTable* MibLeaf::get reference_to_table()

If the MibLeaf object is part of a table return a pointer to the appropriate MibTable
object, otherwise return 0.

22 5 THE AGENT++ CLASSES

e MibTableRow* MibLeaf::get reference_to_row()

If the MibLeaf object is part of a table return a pointer to row object of this table
MibLeaf belongs to, otherwise return 0.

5.4 MibTableRow Class

The MibTableRow class is a container class for MibLeaf objects. A MibTableRow represents
a row of a SNMP table. The MibTableRow class provides functions to add MibLeaf objects
to a row and functions to find and get them again. Normally a user of the AGENT+-+
API does not have to be concerned with MibTableRow as the MibTable class provides
corresponding wrapper member functions for the above listed operations on rows. But
the member functions listed in the following section can be useful anyhow.

5.4.1 MibTableRow Class Member Functions
e MibLeaf* MibTableRow::get nth(int n)

Return a pointer to the nth columnar object instance of this row. If such an object
does not exists return 0.

e MibLeaf* get_element(const Oidx& oid)

Return a pointer to the columnar object instance of this row with object id oid. If
such an object does not exists return 0.

e snmpRowStatus* MibLeaf::get_row_status()

Return a pointer to the row status object of this row. If the table does not contain
a row status column return 0.

5.5 MibTable Class

The MibTable class is a container class for MibTableRow objects, but seen from the users
view point a MibTable seems to contain only MibLeaf objects. A MibTable object must
be initialised by adding to it a set of MibLeaf objects called columnar objects. This is
best done in the constructor of your sub-class of MibTable by using the add_col member
function (see section 5.5.1.3). Each columnar object is the master copy for any columnar
object instance of its column. Whenever a new row is created MibTable will clone each
columnar object once to build the new row. Hence, it is necessary to redefine the clone
method of every class derivied from MiblLeaf.

MibTable automatically sets the object identifiers of every object of a new row. If the
columnar objects that are part of the index are scalar and the index has a fixed length

5.5 MibTable Class 23

MibTable can set the values of the index objects of a row accordingly to its index value.
Figure 7 shows an example with a fixed index length of two, so the first two columnar
objects are part of the index. Because each sub-identifier of the index corresponds to its
scalar columnar object the automatic index generation can be used in the shown example.

As soon as all columnar objects have been added, rows can be added to the empty table
by using the add_row member function. The add_row member function needs an object
identifier representing the row s index as single parameter. The MibLeaf objects cloned
from the columnar objects are then responsible for answering SNMP requests (see section
5.3.1.3). Rows can be added automatically by SNMP SET requests if the MibTable object
contains a snmpRowStatus columnar object. See section 5.8 for more information about
the SMIv2 row status mechanism. Rows can be removed with the remove_row member
function.

How a SNMP table can be coded to AGENT++ is shown in figures 8 and 9.

Original MibLeaf Objects

23.1
24.6
100.3

107.4
Examples for 109g 9

Row Indecies 109.8

11.7
123.2
125.12

! ' Cloned MibLeaf Objects

[[] Columnar Objects

|:] Instances of Columnar Objects

Figure 7: Structure of MibLeaf objects contained in a MibTable object

5.5.1 MibTable Member Functions
5.5.1.1 Constructors

e MibTable::MibTable(const MibTable& other)

Create a MibTable object from another table. All columnar objects and their in-
stances are cloned.

e MibTable::MibTable(const Oidx& oid)

Create a empty MibTable object with object identifier oid. The given oid refers
to the object identifier of the corresponding SNMP table entry s managed object

24 5 THE AGENT++ CLASSES

CoffeeTime: :CoffeeTime (const 0idx& o, mib_access access):
MibLeaf (o, access, new TimeTicks(0)) { }

CoffeeCups: :CoffeeCups(const 0idx& o, mib_access access):
MibLeaf (o, access, new SnmpInt32(4), TRUE) { }

boolean CoffeeCups::value_ok(const Vbx& vb)

{
if (vb.get_syntax() == value.get_syntax()) {
SnmpInt32 i;
vb.get_value(i);
return ((i>=2) && (i<=12));
}
return FALSE;
}

CoffeeStatus::CoffeeStatus(const 0idx& o): snmpRowStatus(o,
READCREATE) { }

CoffeeSchedule: :CoffeeSchedule():
MibTable("1.3.6.1.3.100.2.2.1", 1, TRUE)

{
// first column takes the automically generated index
add_col(new MibLeaf ("1", READONLY, new SnmpInt32(0)));
// time at which coffee should be ready (no default)
add_col (new CoffeeTime("2", READWRITE));
// number of cups to be made (default is 4 cups)
add_col(new CoffeeCups("3", READWRITE)) ;
// row status
add_col (new CoffeeStatus("4"));

}

Figure 8: Example for a Coffee-Percolator Scheduling Table (Constructors)

5.5 MibTable Class 25

void CoffeeCups::set(const Vbx& vb)

{
set_value(vb);
CoffeePercolator: :set_cups(my_row->get_index() .first (), *value);
}
void CoffeeTime::set(const Vbx& vb)
{
set_value(vb);
CoffeePercolator::set_time (my_row->get_index () .first(), *value);
}
void CoffeeStatus::set(const Vbx& vb)
{
set_value(vb);
switch (get()) {
case rowActive: {
CoffeePercolator::
add_schedule (my_row->get_index() .first(),
*my_row->get_nth(1)->value,
*my_row->get_nth(2)->value);
break;
}
case rowDestroy:
case rowNotInService: {
CoffeePercolator::
remove_schedule (my_row->get_index () .first());
break;
}
}
boolean CoffeeSchedule: :ready_for_service(Vbx#**, int)
{
// check if number of active schedules won't be passed over
return (active_schedules <= MAX_SCHEDULES) ;
// may also check here for overlapping schedules...
}

Figure 9: Example for a Coffee-Percolator Scheduling Table (Method Routines)

26

5 THE AGENT++ CLASSES

(< tableoid >.1). The created table object supports arbitrary index length > 1
within the table, so an index first sub-identifier must contain the length of the
index.

MibTable::MibTable(const Oidx& oid, unsigned int ilen)

Create a empty MibTable object with object identifier oid and a fixed index length
of ilen. The given oid refers to the object identifier of the corresponding SNMP
table s entry managed object (< tableoid >.1). The created table object supports
only index lengths of ilen and the values of columnar object instances participating
in the index are not set automatically.

MibTable::MibTable(const Oidx& oid, unsigned int ilen, boolean auto)

Create a empty MibTable object with object identifier oid and a fixed index length
of ilen. The given oid refers to the object identifier of the corresponding SNMP
table s entry managed object (< tableoid >.1). The created table object supports
only index lengths of ilen and the values of columnar object instances participating
in the index are set automatically if auto is true.

5.5.1.2 Destructor

o MibTable::"MibTable()

Destroy the MibTable object and all contained columnar objects and their instances.

5.5.1.3 Configuration

e void MibTable::add_col(MibLeaf* obj)

Add the columnar object obj to the table. The obj’s object identifier must be of
length one and should refer to the column number.

e void MibTable::add_col(snmpRowStatus* rs)

Add the snmpRowStatus object rs to the table. A table can contain at most one
such a row status object. The snmpRowStatus object makes it easy to control the
creation and deletion of rows caused by SNMP SET requests. See section 5.8 for
details.

5.5.1.4 Table Operations

e MibTableRow* MibTable::add_row(const Oidx& index)

Add a row with index to the table and return a pointer to the corresponding
MibTableRow object. The programmer is responsible for not adding rows with same
index value.

5.5 MibTable Class 27

e void MibTable::remove_row(const Oidx& index)

Remove the row with index from the table.

e void MibTable::remove_obsolete_rows(OrderedList< Oidr >& confirmed)
Remove all rows from the table which index value is not contained in the list of
confirmed index values.

e MibLeaf* MibTable::get(int col, int row)

Return a reference to the MibLeaf object at the position (col, row) within the table.

e boolean MibTable::find(const Oidx& oid, int& col, int& row)
Determine the position of the columnar object instance with object identifier oid.
If found set col and row accordingly (starting from 0) and return true.

e boolean MibTable::find_next(const Oidx& oid, int& col, int& row)
Determine the position of the next columnar object instance with an object identifier
>= oid. If found set col and row accordingly (starting from 0) and return true.

e MibTableRow* MibTable::find_index(const Oidx& index)
Return a pointer to the MibTableRow object containing the row with index index. If
such a row does not exist return 0.

e Oidx MibTable::index(const Oidx& oid)
Return the index portion of the object identifier oid which must be an object id
within the table.

e Oidx MibTable::base(const Oidx& oid)

Return the object identifier of the columnar object corresponding columnar object
instance with object id oid which must be an object id within the table.

5.5.1.5 Request Processing

e boolean MibTable::ready_for_service(Vbx** pvbs, int sz)

Check if a row with the values contained in the array referenced by pvbs and of size sz
can be set active (in service). This member function of a table with snmpRowStatus
object is called whenever someone tries to set the table’s row status to rowActive
using a SNMP SET request. MibTable s ready_for_service member function checks
only if all required columns of a row are set. Overload this function if your MibTable
object needs a more clever check.

28

5 THE AGENT++ CLASSES

Oidx MibTable::get_next_avail_index() const

If the table has a fixed index length of one return the next free index value, that can
be used to create an new row. This can be used to support (following the SMIv2
row status textual convention) managed objects that give a manager a hint for the
next index value which can be used for a new row in a particular SNMP table.

5.5.1.6 Overloaded Member Functions

void MibTable::get_request(Request* req, int ind)

Propagate the GET operation requested by the sub-request of req with index ind to
the appropriate MibLeaf object within the table.

void MibTable::get_next request(Request* req, int ind)

Propagate the GETNEXT operation requested by the sub-request of req with index
ind to the appropriate MibLeaf object within the table.

int MibTable::prepare_set_request(Request* req, int ind)

Propagate the SET operation requested by the sub-request of req with index ind to
the appropriate MibLeaf object within the table. Return SNMP_ERROR_SUCCESS
if the SET request could be performed, otherwise return the appropriate SNMP++
error code.

int MibTable::commit_set_request(Request* req, int ind)

Propagate the commit of the SET operation requested by the sub-request of req
with index ind to the appropriate MibLeaf object within the table.

int MibTable::undo_set_request(Request* req, int ind)

Propagate the undo of the SET operation requested by the sub-request of req with
index ind to the appropriate MibLeaf object within the table.

void MibTable::cleanup_set_request(Request* req, int ind)

Propagate the clean-up of the SET operation requested by the sub-request of req
with index ind to the appropriate MibLeaf object within the table.

Oidx* MibTable::max_key()

Determine the last columnar object instance currently contained in the table and
return a reference to its object identifier.

mib_type MibTable::type()

Return TABLE as type of the MIB object.

5.6 MibProxy Class 29

e MibEntry* MibTable::clone()
Return a pointer to a copy of the table object.

5.6 MibProxy Class

The MibProxy class provides an easy way to proxy a management information subtree.
All SNMP requests addressed to a managed object within that subtree are forwarded
to a given SNMP agent. The MibProxy class asynchronously processes the responses to
the forwarded requests and answers the original requests. Figure 10 shows an example
implementation of a simple proxy agent. This agent holds the snmp group of MIB II
locally and the system, interfaces and extended interfaces group are imported from a
remote agent. The remote MIB groups are imported from the same source agent, but this
is not a must.

5.6.1 MibProxy Class Member Functions

5.6.1.1 Constructors
e MibProxy::MibProxy(const MibProxy& other)
Create a MibProxy object from another (copy constructor).
e MibProxy::MibProxy(const Oidx& root, mib_access max_access, const UdpAddress&
source)

Create a MibProxy object for a management information subtree with the given
root. The maximum access rights for all managed objects within the subtree are
specified by max_access. These rights may be more strict than those of the remote
managed objects, but less strict access rights have no effect. Thus the minimum
of both access rights will be applied. All managed objects belonging to the given
subtree are retrieved from a SNMP agent with the management interface address
source.

5.6.1.2 Destructor
e MibProxy::"MibProxy()
Delete the MibProxy object.

5.6.1.3 Configuration
e void MibProxy::set_community(access_types access, const OctetStr& community)

Set the community for the access type (READING or WRITING) specified by access
to community.

30 5 THE AGENT++ CLASSES

main (int argc, charx argvl[])

{
u_short port = 161;
UdpAddress source("127.0.0.1");
source.set_port (161); // set default SNMP port
if (argc>1) port = atoi(argv[1]); // set listen port
if (argc>2) source = argv[2]; // set source agent IP address
if (argc>3) source.set_port(atoi(argv([3])); // set source agent UDP
// port
int status;
Snmpx snmp(status, port);
if (status == SNMP_CLASS_SUCCESS) {
LOG_BEGIN(EVENT_LOG | 1);
LOG("main: SNMP listen port");
LOG (port) ;
LOG_END;
}
else {
LOG_BEGIN(ERROR_LOG | 0);
LOG("main: SNMP port init failed");
LOG(status);
LOG_END; // program exits on fatal error log O!
}
RequestList: :set_snmp(&snmp) ;
Mib mib;
mib.add (new snmpGroup()); // add local snmp group
// add remote system, interfaces, and extended interfaces group
mib.add (new MibProxy("1.3.6.1.2.1.1", READCREATE, source));
mib.add (new MibProxy("1.3.6.1.2.1.2", READCREATE, source));
mib.add (new MibProxy("1.3.6.1.2.1.31", READCREATE, source));
for (5;) {
Request* req = RequestList::receive(120);
if (req) mib.process_request(req);
}
}

Figure 10: Example of a proxy agent implementation

5.6 MibProxy Class 31

5.6.1.4 Overloaded Member Functions

e mib_type MibProxy::type()
Return PROXY as type of the MIB object.

e MibEntry* MibProxy::clone()

Return a pointer to a copy of the MIB proxy object.

e Oidx MibProxy::max_key()
Return the maximum object id value that may be within the management informa-
tion subtree managed by MibProxy. Because this object id value cannot be deter-
mined exactly root.23? — 1 is returned as an approximate value.

e void MibProxy::get_request(Request* req, int ind)
Forward the by req and ind given GET sub-request to the source SNMP agent and
store its response in req.

e void MibEntry::get_next_request(Request* req, int ind)
Forward the by req and ind given GETNEXT sub-request to the source SNMP agent
and store its response in req.

e int MibLeaf::prepare_set_request(Request* req, int ind)
If the maximum access right of MibProxy is at least READWRITE return SNMP _-
ERROR_SUCCESS, otherwise return SNMP_ERROR_NO_ACCESS.

e int MibLeaf::commit_set_request(Request* req, int ind)
Forward the by req and ind given SET sub-request to the source SNMP agent and
store its response in req.

e int MibLeaf::undo_set_request(Request* req, int ind)
Nothing is done. Returns SNMP_ERROR_SUCCESS.

e void MibLeaf::undo_set_request(Request* req, int ind)

Nothing is done.

32 5 THE AGENT++ CLASSES

5.7 MibGroup Class

The MibGroup class is an encapsulation for a collection of MibEntry objects. MibGroup can
be used to group a collection of MIB objects logically. If such a MibGroup object is added
to a Mib instance it is flattened, which means each MibEntry object within that group
object will be added to the Mib instance and then the group object itself will be deleted.
As MibGroup is derived from MibEntry a MibGroup object can contain other MibGroup
objects.

5.7.1 MibGroup Class Member Functions
5.7.1.1 Constructor

e MibGroup::MibGroup(const Oidx& group_id)

Create a MibGroup object with group_id as the group ‘s object identifier. Any object
added to this group must have an object id belonging to the subtree specified by
group_id.

5.7.1.2 Destructor

e MibGroup::"MibGroup()
Destroy the MibGroup object and all its contained MibEntry objects.

5.7.1.3 Configuration

e MibEntry* MibGroup::add(MibEntry* object)

Add object to MibGroup. If the object s object id is not in the group ‘s subtree the
object will not be added. In any case a pointer to object is returned.

5.7.1.4 Overloaded Member Functions

e mib_type MibGroup::type()
Return GROUP as type of the MIB object.

5.8 snmpRowStatus Class

The snmpRowStatus class is derived from MiblLeaf and provides functionality to control
the manipulation of MibTable rows. The snmpRowStatus class is an encapsulation of
the SMIv2 row status textual convention. Figure 11 demonstrates the states which the
snmpRowStatus object can traverse.

5.8 snmpRowStatus Class 33

notinService

notinService

createAndWait
notinService

900 1,@

destroy
destroy

createAndGo

A: Doesn’t Exist
B: Not Ready
C: Not In Service
D: Active

Figure 11: State Diagramm of RowStatus interaction

5.8.1 snmpRowStatus Class Member Functions

5.8.1.1 Constructor

e snmpRowStatus::snmpRowStatus(const Oidx& column, mib_access max_access)

Create a snmpRowStatus object with object id column, which will be in most cases
the number of the last column of a SNMP table. Usually the maximum access
right is READCREATE, but there may be situations where the user should not be
able to create new rows. In these cases max_access may be set to READWRITE or
READONLY. If a READCREATE snmpRowStatus object is used in a table all the other
columnar objects should have an maximum access right of at most READWRITE to
assure that the row status mechanism is used to create new rows.

5.8.1.2 Destructor

e snmpRowStatus::“snmpRowStatus()

Destroy the snmpRowStatus object.

5.8.1.3 Request Processing

e boolean snmpRowStatus::check_state_change(const Vbx& new_status)

Return true if the row can be set to the row status given by new_status. If the
current status is rowNotReady or rowNotInService and the desired status is rowActive

34 Bibliography

snmpRowStatus calls the ready_for_service method of the table with the values of the
row s MibLeaf objects to check if this operation is permitted.

5.8.1.4 Miscellaneous

e long snmpRowStatus::get()

Return the status of the row to which snmpRowStatus belongs. This can be rowNot-
Ready, rowNotInService, or rowActive.

5.8.1.5 Overloaded Member Functions

e MibEntry* snmpRowStatus::clone()
Return a pointer to a copy of the snmpRowStatus object. Always refine the clone
method in derived classes in order to make sure the derived class is called within a
table rather than its base MibLeaf.

e boolean snmpRowStatus::value_ok(const Vbx& vb)

Return true if the row status can be set to vb’s value. The snmpRowStatus::value_ok
member function checks only if the desired way to change its state is valid.

References

[Mellquist96] Peter E. Mellquist. SNMP++, An Open Specification for Object Oriented
Network Management Development Using C++. Hewlett Packard Company, 1996.

[Perkins97] David Perkins and Evan McGinnis. Understanding SNMP MIBs. Prentice
Hall PTR, 1997.

