MIB Designer 3.2

A Java SE Application
for Visual MIB Design and Editing
of SMIvl and SMIv2 MIB Modules

Copyright © 2001-2012, Frank Fock. All rights reserved.

Table Of Contents

1

2

2.1
2.2
2.3
2.4
2.5

4.1
4.2
4.3

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.3

System Requirementsocceevievuiiniiniiiiniinniiniciieniccscec e 1
Installationcoceeiiiiiiiniiiece e 2
Using Java WebStartccccceeuecieirenieinincineneetneeeeieseeee e 2
Other Platformsccoeivieiiiiiiiinieiicicneeece e 2
Starting MIB Designercccociviiiiiiiiiiiiiiiiiiiiiiien 2
UPGIAdE ..niiiiiiciiiiirieic ettt 3
Uninstall ..o 3
What Is MIB Designer?coceiiiiiiiniinininiiiiiiiincnisisenessessesesseesennes 4
SELUP ceiiiiiiiiiiiic e s 6
Creating a MIB Repositoryccccceiiiiiiiiiiiiiiiiiiicicccce, 6
Compiling MIB Filesccccuviniiiiiniiiiiiniccineceteeeeeeeee e 6
Deleting MIB Modulesccccovuevieininieiieineicinineietneeeeesreeeeeseenen 9
Using MIB Designerc.coouviviiiiiiniiiniiiniiciiccieciecnecnecieecne e 10
Creating a New MIB ..o 11
Editing a MIB ...ciiiiiiiiiiceeceree ettt 12
IMPOIT ciiiiiiiiiiiic e 12
Add e 13
COPY vereneerentetetrtes ettt ettt ettt ettt ettt ettt h et 14
UL ettt ettt ettt a s bbbttt bbb sae s 14
PASTE ettt ettt et 14
Edit oo 15
Edit ComMmMENtccueiiiiiiiiiiiiiiiiiiiciciceee e 15
MOVING ODBJECES .vvvviiiiiiieiieiisieietsetetee et 16
Renumbering ODJectseoveiririeiiininiiinerceerceeeceeseee e 16
MIB Object Editing Dialogscccecevuiiiiniiiiiiiiiiiiiiiiiiiciccce, 16
Object Identifierccoeivivieiiiniciiiiecrcece e 18
ODbject IdEntity ...covevveieiiriiicieieeere et 19
Module Identity ..coceeveiecieniiniinininceecee e 20
Textual-Conventionc.cceeverieinenieinineeeeeeeeeeee s 22
ODbJECt TYPE vttt 24
TADIE e 25
INOTFICATION ntintitiiieiieitet ettt 27
GIOUP ittt 28
Module Compliancecc.ccueeereririnieiiieieceeeeeeee e 29
Agent Capabilitiesccovevieiirinieiiiee e 30
MIB-Tree Colors and Iconscccevieuiiiiiiniiininiiiniiicciceccceees 32

Built-in Spell Checkingc.ccoveoiviiiniiiiiiinciiincccccccee, 33

5.4

5.4.1
5.4.2
5.4.3
5.4.4

9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.2
10
10.1
10.2
10.3
10.4
11
11.1
11.2
12
12.1
12.1.1
12.1.2
12.1.3
12.2

Finding MIB ODbJECts ...covevueiiiniiiiiniiicieiesiceeseeeeseseee et 34
Search MIB Repository for Importing Objectsccecevveiiininiiininncnnnne. 34
Search MIB Repository for Referencesccccecevevvevrenccinincnecincnienne. 35
Navigate Between MIB ODbjJectsocoveererienieinenieininicieeneieieeseeeene 35
Refactor Object Names and Descriptionscccceeeeivivieirinicnieinennenne. 35

MIB Validationcc.coevereririnieieeiesesesieseee ettt 36

Saving and Exporting a MIBccccviiiiiiiniiiiniencceeceeeee 36
Exporting MIBs to XML, HTML, XSD, PDF, and Textc.cccceceveuenene. 37

Printing a MIB moduleccocovieiiininiiiiinicicineceeceeeeeeeeeenes 38

MIB File EItOr c..ooviiieiiiiinieieinieicteeeeesteeseseee et 38
Checking a MIB Filecccceoiniiiniiiniiiiiciicciccecceeeees 38
Saving and Compiling a MIB Filecccccceceviiiininiiininiiiinccenccenen 38
Auto Syntax Completioncccceveririnininiiiiececeeee e 39
Printing with Syntax Highlightingccccoccoiiiiii 40
Search and Replace by Regular Expressionscccccvvevecinincnccnenncnne. 40

MIB DESIGN ..cvviniiiiiiiiiiiiiiiiicnict ettt sr s saeens 42
Revision Control ..ot 52
MIB COMPALISON ...uveeviiniiiniiiiiiiiiiiiciceicst et aesa s aeens 54
SMI CONVELSION ...uviurinririitiiniiniiiiiinieniiear et es s sae s sas st essesnens 56

SMIVI t0 SMIV2 oot 56
Fully AUtomatedcccoevieiiinieiiiniiicneceeeeeseeeee e 56
Manual Intervention or Review Neededccoeivviiiniiniiiiniiniicee, 57
INOE SUPPOITEd ..o 58

SMIV2 t0 SMIVL oo e 59
Fully AUtomated ...c..ccovevieiiiniiiiinecec e 59
INOE SUPPOITEd et 60

COLTECION .uvviiiiniiiiiiiiiiiiiitic et ar e s sar e s sare e saaessareesans 61

Index Range COrrectionccueueivieueririeinieinieieinieeeeeeeeeseeeseneesneneees 61

INTEGER Usage Correctionccccceuiiuiiiiiiiiiiiiiiiniccicnceecceieienns 61

(Case COITECTION ..uviiuriiiiiiieeiieetterte ettt et 61

SMI Macro Import Correctioncocevveevieiiinieniiniiinieiieieneesieseeseeneenns 61

TOOIS ittt s 62
T00l ConfIGUrationcc.ccviuirierieieiinieieereece et 62
T0O0] EXECULION .ottt 64

Preferencescovviviiviininiiiiiiiiiiii e 66

GENETAl .o 66
MIB COmPILEr ..veviiieiiiiiiiiieecteeeeeeee et 66
MIB GENErationcccceiciiiiiiiiiiiiiiiiiiiiiiieie e 66
Other OPLioNS ..cc.eeveeeuiriirieiiericeetetee ettt enes 67

REPOSITOIY .oovviiiiiiiiiiiiciicccc e 67

12.3
12.3.1
12.3.2
12.4
12.5
12.6
12.7
13

14

15

VEEW ettt ettt et e e et e et e e e e e e e e e e tra e e e eetaaeeeenarraeean 68
LOOK QEFEEL .o 68
Other View SEttingscccoeoeeerieieinenieinenieieineeeeeesteee e sneees 68

Spell Checkingcovcveiiiriiiiinecec e 68

DEAULES e e e 68

Syntax Highlightingcccccooviniiiiiiicceccenee, 69

PLINTNG wootiiiiiniieiieeeeeeeeee ettt 69

Trouble-Shooting ..o, 70
Error Messagescoccoeviinuiiiiiiniiiiiiciicciiciccicc e 73
Regular EXpression Syntaxcoceveveveercniiniinicniencneniniceercsnenese e 79

cee

1 System Requirements

1 System Requirements

Minimal system requirements for MIB Designer v3.2:

» - 40 MB free disk space - not including disk space required for the

Java runtime environment installation.
» 64 MB free RAM (128 MB or more recommended).

» Java Runtime Environment (JRE) v1.6 or later installed and the JRE’s
bin directory added to the system’s PATH environment variable.

» Java WebStart 5.0 (included in Java JRE 5 or later) if using the Web-
Start distribution version of MIB Designer.

» File system that supports filenames with up to 64 characters.

2 Installation

See section “System Require-
ments” on page 1 for the system
requirements of the supported
platforms.

2 Installation

There are two different MIB Designer installation packages available for
download from hep:/fwww.mibdesigner.com.

The preffered, if Java Web Start is available on your system, is the Java
Web Start download from http://www.mibdesigner.com/MIBDesigner-
WebStart.jnlp.

Themibdesigner.jar file can be used on all platforms, including
Windows, but without start menu integration.

2.1 Using Java WebStart

The preffered installation option is Java WebStart, because MIB Designer
will be automatically updated with the latest version - unless you deactivate
the WebStart update option.

To start the installation simply click on http://www.mibdesigner.com/
MIBDesignerWebStart.jnlp and follow the instructions.

Once you have started MIB Designer and entered your license informa-
tion, choose File>Install... to install MIB Designer MIB files and reposito-
ry as well as other accompanied files on your system.

2.2 Other Platforms

Download the mibdesigner. jar file in a folder of your choice. Start
the MIB Designer application by

» double clicking it from your system’s file explorer, or

» running:
java -jar mibdesigner.jar

Once you have started MIB Designer and entered your license informa-
tion, choose File>Install... to install MIB Designer MIB files and reposito-
ry as well as other accompanied files on your system.

2.3 Starting MIB Designer

If you have used WebStart to install MIB Designer then you can start it
from your systems application start menu or clicking on http://www.mib-
designer.com/MIBDesignerWebStart.jnlp.

Otherwise double click the downloaded mibdesigner. jar file or
run java -jar mibdesigner.jar from the command line.

When MIB Designer is started for the first time, you will be prompted for
your license information.

If you are using a restricted license you can upgrade it later without re-
installing MIB Designer by choosing Help>License... from the main
menu.

A MIB file can be specified as command line parameter which is then
compiled and loaded on startup:

java -jar mibdesigner.jar <mibfile>

24 Upgrade

When installed through Java WebStart, MIB Designer will be automati-
cally updated through WebStart on application startup, if a newer version
is available on the MIB Designer web site.

If a newer version of the accompanied file set is available with the new
version, MIB Designer will ask you to install them over the current instal-
lation location. If you confirm the installation, MIB Designer will over-
write existing files with their newer version unless you have activated the
setting “Warn before overwriting files”. See “Other Options” on page 68.

2.5 Uninstall
If MIB Designer has been installed using Java WebStart, then run

javaws -viewer

to bring up the Java WebStart viewer. Select “MIB Designer” from the
cached applications list and use Delete from the context menu to remove
MIB Designer from your WebStart cache. This will also remove any desk-
top integration from your start menu.

If you have not used Java WebStart to run MIB Designer it is sufficient
to remove themibdesigner. jar file and optionally the accompanied
files installed by MIB Designer on its first startup.

MIB Designer holds its configuration data in the MIBDesigner3.cf
(MIBDesigner2.cf for MIB Designer 2.x) file in your home directo-
ry. To completely uninstall MIB Designer, this file has to be removed
manually. By removing it, you will have to reenter your license informa-
tion - as well as other configurations - when you reinstall MIB Designer.

2 Installation

Please enter your license including
blanks! The license key, which is
case sensitive, must be entered
without any blanks!

Note: The files installed by using
MIB Designer’s Install.. menu item
must be uninstalled manually, if
they are no longer needed.

3 What Is MIB Designer?

MODULE-IDENTITY editing is sup-
ported via popup dialog only in
order to enforce revision control.

DEFVAL and DISPLAY-HINT clause
content checking, for example, is
not supported by most other MIB
editors and compilers.

3 WhatlIs MIB Designer?

MIB Designer is a tool to visually create and edit MIB modules that com-
ply with the Structure of Management Information (SMI) rules. With
MIB Designer there is no need to be familiar with ASN.1 or SMI syntax
notation. Providing tools like drag & drop of MIB nodes, error checking,
and preview with syntax highlighting, MIB Designer makes writing MIBs
a question of minutes - on nearly any operating system.

While designing MIBs with MIB Designer, its tree view with integrated
SMI preview guarantees best overview of the MIB information. Its search
function provides fast access to any portion of the MIB. The intuitive
graphical user interface ensures building syntactically correct MIBs that
will compile with all SMIv1l and SMIv2 compliant MIB compilers.

MIB Designer can be used to create new SMIv2 MIB modules but it can
also be used to edit existing SMIvl or SMIv2 MIB modules. Creating of
SMIv1 MIB modules is not supported since the IETF requires new MIB
modules to be written in SMlv, however you may create your MIB as
SMIv2 and convert it back to SMIvl for compability with SMIv1-only
compilers (see “SMIv2 to SMIv1” on page 60).

The MIB Designer features are:

» Round-trip editing for SMIv1 and SMIv2 MIB modules.
» New MIB modules are automatically created using SMIv2.

» Supports editing all SMIv2 objects (including Agent-Capabilities)
with popup dialogs and directly with the SMI object editor which has
SMI syntax completion built-in (via <Ctrl>-<Space>)

» Intuitive graphical user interface with easy table editing,.

» Preview of module and single objects with syntax highlighting.

» Text, HTML, XML, XML Schema (XSD), and PDF export of MIB
modules.

» Formats and pretty prints existing and new MIB modules.
» Search MIB tree and MIB repository by regular expression

» Runs everywhere (where Java Runtime Environment 1.5 or later is
available).

» Virtually unlimited Undo/Redo.

» Various consistency checks strictly following the SMIvl and SMIv2
standard.

Automatic refactoring of object references when the referred object is

changed.

Validates the SMI syntax of an edited MIB module or a single MIB
object and selects invalid nodes in MIB tree and invalid SMI text in
SMI editor window.

Edit object references by selecting MIB objects from option menus.

Easy import of MIB objects and textual-conventions from other MIB
modules.

Leniently import a MIB with minimized error checking in order to be
able to correct it.

Optional revision control of MIB modules to protect them against
incompatible changes.

Editing of several MIB modules at the same time with the ability to
copy, cut, and paste objects between modules.

Visual comparison of MIB modules. Differences are shown by colored
nodes in the MIB tree; differences between objects are shown by
underlined text in the SMI preview.

MIB files and objects can be edited in a text editor supporting search
and replace using Perl 5 regular expressions and syntax completion
through <Ctrl>-<Space>.

Edit and print MIB files with syntax highlighting.

Integration of external tools by configuration, for example to issue
SNMP requests, view a MIB module as PDF using a PDF viewer, gen-
erate program code from a MIB module or a set of MIB modules.

Spell checking of entered text on the fly with correction suggestions.

GZIP compression of compiled MIB modules in the MIB repository
for less disk usage and faster loading of MIB files from disk storage.

SMI conversion from v2 to v1 and vice versa (with full undo/redo).

Automated correction of some typical SMI(v2) syntax errors.

3 What Is MIB Designer?

4 Setup

Please make sure when selecting
the MIB repository directory that
its name is shown at the bottom of
the MIB repository selection win-
dow within the file name field be-
fore you press OK (see Figure 2-1).

Figure2-1: MIB repository selec-
tion dialog

4 Setup

A few things need to be setup, before MIB Designer can be used to edit or
create MIB modules. Please follow the steps set forth below.

4.1 Creating a MIB Repository

When MIB Designer is started for the first time it asks to create a MIB re-
pository. A MIB repository is a directory where MIB Designer stores MIB
information using an internal format. A new MIB repository is created by
simply creating an empty folder.

Later, the MIB repository can be changed by choosing File>Set Repos-
itory from the main menu. Switching from the current MIB repository to
any other MIB repository does not alter any data of the repositories.

x|

Look in: ||jmihs -] @ @ @ =

[repository
3 riernibs

File name: |repnsitor\; | Open

[

Fles of type: | All Files () v|| Cancel |

4.2 Compiling MIB Files
MIB files may be imported into a MIB repository as follows:

1. Use the File>Import menu () to import a single MIB file, check its
syntax and - if it is OK - to add it to the MIB repository and load it for
editing.

2. If the MIB file has errors, a text editor will be opened (shown by
Figure 2-2). The encountered errors are listed above the edit area.

Once the MIB file is correct, the Import button () can be used to
save and import the corrected file. If the file has still errors then these
errors will be displayed in the editor.

3. Use the File>Compile MIBs menu (EL) to add a directory or a list of

files to the MIB repository by updating any existing MIB modules By
opening a directory all files in that sub-tree are sorted by their import
dependencies and then loaded into the repository. ZIP archives found
in the sub-tree are opened and the included MIB files are sorted and
loaded into the repository as if the archives were unpacked.

4. After having processed all MIB files, MIB Designer will report any

errors in a message box. The detailed error messages can be viewed by
choosing Details... from that message box. The Compiler Log window
is then shown as illustrated by Figure 2-3. The compiler log table can
be printed from the log table’s context menu and sorted by column by
clicking on the column’s header. By double clicking on a row corre-

sponding to a failed MIB file, thus a row marked with a stop () sign,
the MIB file editor can be opened to correct the syntax error. After
pressing the editors Import button, the corresponding row will be
updated in the compiler log table.

. Use the File>Add MIBs menu to add a directory or a list of files to the
repository without updating/changing any existing MIB modules. As
for the rest this method behaves similar to the above.

. Use the File>Import Leniently menu if the MIB module has errors
that you want to correct with MIB Designer. Please check the
imported MIB module immediately after loading as described in sec-
tion “Refactor Object Names and Descriptions” on page 306, because it
may contain errors although it has been loaded successfully. This
option reduces the error checking of the SMI parser to a reasonable
minimum to facilitate the process of correcting broken MIB modules.

Section “Error Messages” on page 74 shows a list of all error messages.

4 Setup

MIB file ZIP archives must have a
file extension of “.ZIP’ or “.zip’ to
be recognized by the MIB com-
piler.

4.2 Compiling MIB Files

Figure2-2: MIB File Editor

MIB_ACME-AGENTCAP-MIB-snmpconf-

File Edit
CafRs dhE o2 e 5

Number | Error | Description

-
Pl s v ay

1= I experimental 56 } -- TBD by I4ANL

systenll AGEHNT-CAPABILITIES
FRODUCT -RELERSE
T
STATUS current
DESCRIPTIOH
"This fictionmel system was deployed with these conditions.™

REFEREHCE
Mhozsikly 2 URL™

SUPPORTS ACME-HOUSECTL-MIE
THCLUDES | acneHouseInventoryGroup,
acneHouseklobal sGroup

VARIATION acmeHouselnvenkdminitatus
RCCESS read-only
DESCRIPTION "First implementation does not allow updates to status.”

2= ¢ N)

4

52:16

4 Setup

AY

1I
Status File Errors Path
Failed vendorfietf_drafts/mibs_v12fAAL2-MIB-ashoka-00,txt 1 D\mibs\ietFietf _drafts.mibs.zip
= Failed vendorietf_drafts/mibs_v12{ACME-AGENTCAP-MIB-snmpconf-03.Ext < D:\mibs\ietFlietf _drafts.mibs.zip
Murmber Error Code Description
[3 1000 ecting one of: <UPPERCASENAME>"." ...
z 1500 Unresolved synkax reference acmeHouseGlobalsGroup at line 45, column 8
3 1500 Unresalved syntax reference acmeHouselInventoryGroup at line 44, column 25
4 1500 Unresalved synkax reference acmeHouseInvenddminstatus
Status File: Errors Path M
[o]4 vendorfietf_drafts/mibs_v12/ACME-HOUSECTL-MIB-snmpconf-03.txt o D\mibs\ietFietf _drafts.mibs.zip A
QK wendor fietf_drafts/mibs_v12ADSL-LINE-EXT-MIB-adslmib-08.kxt 1] D \mibshietfietf _drafts.mibs.zip Al
= Failed vendorfietf_drafts/mibs_v12fALARM-MIB-disman-03. txt 4 D:\mibs\ietFietf _drafts.mibs.zip
Mumber Error Code Description
1 1000 Syntax error: Encountered "xx }" at line 45, column 22: Was expecting one of: <LOWERCASEMAME= "{" ...
2 1501 Unresalved object reference xx

]

|

[1000] Syntax error: Encountered "<¥x 57" at line 52, column 10:
Was expecting one of;

<UPPERCASEMAME="" ...

<LOWERCASEMNAME ...

g

<MUMBER > ...

4.3 Deleting MIB Modules

MIB modules are removed from the MIB repository by choosing File>De-
lete... (1) from the main menu. A shuffle dialog is opened which allows
selecting the MIB module(s) to be deleted. By pressing OK, all MIB mod-
ules on the right list will be deleted. Because there is no Undo for this ac-
tion, a confirmation dialog is shown.

If a MIB module depends on a MIB module that is added to the right
list, the dependent MIB module will also be moved to the right.

x
i rDelete
MIB Module MIB Module
APFLICATIUN-MIE =] ADSL-LINE-MIE-
BRIDGE-MIB || ndel ATHMIE
COPS-CLIENT-MIE B TeTeME
DIAL-CONTROL-MIB Add Al IPATH-IPMC-MIB
DIRECTORY-SERVER-MIB m
DISMAN-NSLOCKUP-MIB
DISMAN-PING-MIB
DISMAN-SCHEDULE-MIB ,m
DISMAN-SCRIPT-MIB
DISMAN-TRACEROUTE-MIB |~
L] v
OK Cancel

Figure2-3: Compiler Log

Caution: By pressing OK on the
MIB deletion confirmation dialog,
the MIB will be removed from the
repository without providing any
means for undoing the deletion!

Figure2-4: Deleting MIB modules.

10

5 Using MIB Designer

The syntax completion is avail-
able in the SMI Editor and the MIB
File editor. See “Auto Syntax Com-
pletion” on page 40.

5 Using MIB Designer

After starting MIB Designer the left (tree) window will contain the last ed-
ited (and saved) MIB module. If there is no such module you will be asked
to create one with the MIB creation wizard.

The panel on the right side is divided into the SMI (object) editor and

a read-only preview and navigation panel:

» SMI Editor - The SMI object editor shows the SMI definition of the
current node under the Objects and Textual-Conventions root nodes.
For objects other than a MODULE-IDENTITY construct, the SMI
editor can be used to directly edit the objects definition. By pressing
<Ctrl>-<Space> SMI syntax completion tries to complete the SMI
text. If there is only a single valid completion, then the token (if any)
at the cursor position will be replaced by the completion. If there are
several completions, a popup dialog appears to select the appropriate
completion by pressing <Enter> or double clicking on the item to use
for completion. If there is no completion, then no changes to the text
will be done. To cancel the completion dialog press <ESC>.

» SMI Preview/Navigation - The preview and navigation panel provides
a SMI preview of the selected node. In contrast to the editor, the pre-
view SMI panel contains additional navigation comments for easy
navigation through the MIB tree using hyper links. Comparison
results are also displayed in this panel. For more information about
MIB module comparison see “MIB Comparison” on page 55.

The following sections describe which steps are necessary to create a new
SMIv2 MIB module (“Creating a New MIB” on page 11) and how MIB
Designer’s object editing dialogs can be used to edit such a MIB module
(“Editing a MIB” on page 12).

5 Using MIB Designer

W& MIB Designer

Fle Edt Wew Extra Took Help

Menu Bar

=10l x|

GaEHFIed Bk PA@ <> PR UMD BB A

Tool Bar

2= ENTITY-MIE
b3 Imports
Bl Objects
B & mb-2
-7 entityMIB
Bl (= entityMIBObiects
| B entityPhysical
BB entPhysicalTable
8 entPhysicalEntry
-3 entityl ogical
B3 entityMapping

MIB Tree

a4 i
NI Editor \ SMI PreviewHavigation

B) EbH e e &

newlbjectUithError OBJECT-TYPE
SYHTRX

read-only
STATUS current
DESCRIPTION

SMI Editor

-- 1.3.6.1.2.1.47.1.5
1= { entityHIEObjects 5 }

(= entityMIBTraps

(5 entityMIETrapPrefi
@) entConfinChanne
(= entityConformance

B} (& entityCompliances

entity2Compliance
B entityGroups
entityPhysicalGroun

3:19

av

entityMappinaGrou Humber Error | Desription

entityGeneralGroup 1
entityMotificationsGroup
entityPhysical2Graup
entityl ogical2Groun

B+ Textual-Conventions
{2 putonomousType

1000 Synkax error: Encountered "INTEGER MAX-ACCESS” at line 1169, column 17:

MIB Validation Result

E physicalClass <OID> ...
L = Ok I =L RITS"
ENTITY-HIE | Errors | Tool Output |

5.1 Creating a New MIB

In order to create a new MIB module select File>New (E) from the main
menu. A three step wizard opens. By following the wizard step-by-step, a
new MIB module can be easily created - including a top level object struc-
ture and a basic set of object groups.

When canceling the wizard, the following steps have to be performed,

before the newly created module can be saved:

Edit the module’s name by selecting the tree’s root node, opening the
tree’s context menu by pressing the right mouse button and selecting

Import any object identifiers and textual-conventions you wish to use
with the new module from other MIB modules by choosing
Edit>Imports... from the main menu. For details on the Imports
menu see subsection “Import” on page 12. The imported MIB objects
will then appear in the MIB tree under the Objects and the Textual-

1.

Edit.
2.

Conventions node.
3.

Add any OBJECT IDENTIFIERS or OBJECT IDENTITIES that
need to be defined above your module identity node. A SMIv2 MIB

Figure2-5: MIB Designer’s main
window.

11

12

5.2 Editing a MIB

must define a module identity node exactly once. Object identifiers
and object identities are added by selecting Add>Object Identifier or
Add>Object-ldentity from a node’s context menu, respectively.

4. Add a module identity node by selecting Add>Module-Identity from
the context menu of the node under which you want to define it.

5.2 Editinga MIB

With MIB Designer MIB objects can be added, edited, copied, cut, pasted
and removed. These functions can be accessed through a node’s context
menu or through the Edit menu. Undo (@) and redo ('@) of edit opera-
tions is available for the last 50 actions.

Depending on the type of the node (i.e., whether it is an OBJECT-
TYPE, OBJECT IDENTIFIER, etc.) some of the menu items may be dis-
abled. If the MIB object, for example, is an OBJECT-TYPE then the Add
menu will be disabled, because SMI does not allow defining an object be-
low an OBJECT-TYPE definition. All menu items of the context menu,
apart from Add, have also counter parts on the tool bar (LT B @),

With a Drag&Drop mouse operation, Cut&Paste or Copy&Paste can
be performed by a single mouse click. The default drag action is ‘move’
which cuts the entire sub-tree rooted at the selected node and pastes that
sub-tree as a new (last) child under the target node.

By pressing <Ctrl> while selecting the node to be dragged, the drag ac-
tion can be changed to ‘copy’. It copies a selected leaf node or sub-tree. A
copy of the dragged node (and its sub-tree) is then inserted as a new (last)
child of the target node. Please refer to sections “Copy”, Cut, and “Paste”
on page 14 for further details on cut, copy, and paste.

The object ID of any MIB object that is a descendant of the Objects
node can be dragged to any external application capable of text or string

dropping.

5.2.1 Import

Before an object from another MIB module can be used or referenced in a
module it must be imported. Objects are imported using the Edit>Im-
ports... menu item (alternatively: <Ctrl-Alt-I> or Import... from the
node context menu) or via the Search MIB Repository dialog (see “Search
MIB Repository for Importing Objects” on page 35). Choosing Edit>Im-
ports opens the Imports window which is shown by Figure 2-1.

To import an object definition or ASN.1 macro from a MIB module:

1. Select the MIB module that defines the object definition from the
Source MIB Module list. If you are unsure where the object is defined,
use the Search MIB Repository function to look it up.

2. With the Add or Add All buttons, you can select the object to be
included in the MIB modules IMPORT clause.

To remove an object definition or ASN.1 macro from a MIB module:

1. Select the MIB module node under the /mports node in the MIB tree
from which the definition has been imported.

2. Select Edit from the context menu.

3. Select the object definition to be removed in the right table (named
“Imported”) and press the Remove button. If the button is disabled
then the MIB module has still references to this node. You will then
have to remove those references before you can remove the import.

By activating the option “Automatically import SMI macros” in Ed-
it>Preferences, MIB Designer automatically imports all SMI macros nec-
essary for the current module whenever the module is checked by
View>Check. When activated this is also done automatically when saving
a module.

4 Edit IMPORTs

Source MIB Module: | SNMPv2-SMI e |

x

ASN.1 Comment: [|

Objects and Definitions
Not Imported Imported
Ohject Ohject
QBJECT-IDENTITY (=] MODULE-IDENTITY
MNOTIFICATION-TYPE QBJECT-TYPE
Counter32 snmphodules
Counterg4
Gauge3z
Integer32
IpAddress
Opague
TimeTicks
Unsigned32
EUTCTime 3

5.2.2 Add

To add a MIB object to the current module, select the object under which
you want to create the new object and choose Add from the Edit menu.
Alternatively, you may choose Add from the context menu. The new ob-
ject is created as the last child of the selected node. The new object has a
default name and an automatically assigned object ID. Further details on
editing MIB objects and an overview of all possible MIB objects and their
editor windows can be found in section “Moving Objects” on page 16.

5 Using MIB Designer

Caution: When SMI macros are
imported automatically, unneces-
sary MACRO imports will be re-
moved from the imports clause
and MACRO imports will be
grouped at the bottom of each im-
port source statement!

Figure2-6: Imports window

13

14

5.2 Editing a MIB

MIB objects are copied to an inter-
nal clipboard which is not shared
with other applications.

5.23 Copy

A MIB object (and its sub-tree) is copied to the internal clipboard by se-
lecting the corresponding node within the MIB tree and pressing <Ctrl-C>
(alternatively: Ts} Edit>Copy, or Copy from node context menu). The
copy is identical to the original nodes except for the object names. The
copy’s object names are changed to ‘<original_name>#’, where 7 is the
number of the copy starting from 0. Its object ID and those of all objects
in the copied sub-tree are adapted when the object is being pasted. When
the sub-tree contains a MODULE-IDENTITY construct, then this object
will be transformed to an OBJECT-IDENTIFIER in the copy, because a
MIB module must contain exactly one MODULE-IDENTITY.

Whenever a node is copied to the internal clipboard, its OID is copied
to the system clipboard. Thus, copying a node can be used to export the
OID of an object as a string to an external application. Because textual-
conventions do not have an OID their object name is copied instead.
Please note that when copying/cutting a sub-tree only the OID of its root
node is copied to the system clipboard.

5.24 Cut

A sub-tree or a single MIB object is cut to the clipboard by selecting the
root node of the sub-tree or by selecting a leaf node, respectively and then
pressing <Ctrl-X> (alternatively: B#l, Edit>Cut, or Cut from node context
menu). A cut sub-tree can be pasted more than once, provided that it does
not contain a MODULE IDENTITY node.

A cut sub-tree, or any cut MIB object other than a TEXTUAL-CON-
VENTION, can be pasted to OBJECT IDENTIFIERS (nodes), OB-
JECT IDENTITIES, and MODULE IDENTITIES only. If the cut
object is a TEXTUAL-CONVENTION it can be pasted to the Textual-

conventions node only.

5.2.5 Paste

A sub-tree or a single object cut or copied to the clip-board, can be inserted
beneath a selected node by pressing <Ctrl-V> (8, Edit>Paste, or Paste
from node context menu). If an object name of any of the pasted objects is
already used within the module then it will be renamed by appending 0 to
its name. If its name ends on a number the number will be incremented by
one. The OID of the pasted node (sub-tree) is changed to the next avail-
able OID after the last child’s OID.

5.2.6 Edit

A selected node is edited by pressing <Ctrl>-E (@, Edit>Edit, or Edit from
node context menu). The editor windows vary from object type to object
type, but common to all windows is the Object Definition group. Here the
object’s name, ID, status, description and an optional reference can be ed-
ited. Please note that depending on the edited object some of the above
listed fields may be disabled. Textual conventions, for example, do not
have an object ID. Module identities do not have a status.

Changes to the edited object are not committed until the user closes the
editor window by pressing its Save button. When saving the changes, the
object’s ID and the name are checked for being valid and not ambiguously
defined within the current MIB module. In the case of an invalid object
ID or name, an error dialog is shown and the user may then correct the in-
valid ID or name.

In addition to editing a SMI object through editor dialogs, unreleased
SMI objects can also be edited directly by using the SMI editor (see “Edit-
ing a MIB” on page 12). Within the editor you can enter the SMI specifi-
cation of the selected node in the MIB tree. Only valid SMI syntax may be
saved into the tree by either selecting another node or pressing <Alt>-S.
MIB Designer allows to save a node even if the change renders the whole
MIB module invalid. Thus, it is reccommended to check the whole MIB
module by pressing <Alt>-C after all changes have been made to a MIB
module.

5.2.7 ASN.1 Comments

For each node ASN.1 comments can be entered or edited respectively. A
comment can be placed at the top of each node or inline before the object
identifier assignmentl.

To edit a comment, choose ASN.1T Comments from the context menu
and then select either Edit Top Comment or Edit Inline Comment. Each
entered comment line must start with two consecutive hyphens as long as
the line is not empty. The next sequence of two consecutive hyphens
would end the ASN.1 comment. But in most cases this is not desirable, so
it is wise to avoid them.

1. Theinline ASN.1 comment is only available for MIB objects with an
object identifier assignment.

5 Using MIB Designer

The prefix of the object ID is given
by the parent node and therefore
fixed. The OID’s suffix however,
can be given by one or more dot
separated sub-identifiers (un-
signed numbers).

If the leading hyphens are left out
then they will be added by MIB De-
signer.

15

16

5.2 Editing a MIB

If a MIB module is exported with
activated ,generate MIB Designer
comments” option (see “General”
on page 67) and reimported after-
wards then the generated OID
comments appear as inline com-
ments. While exporting the mod-
ule another time, MIB Designer
detects that the comment is al-
ready there and will not regener-
ateit.

Press <Alt>-<Up>to move a node
upwards in the tree.

Press <Alt>-<Down> to move a
node downwards in the MIB tree.

ASN.1 comments should be used rarely, because most MIB browsers are
not able to show such comments. Thus, any information that is needed to
understand a MIB object or module should be described in its DESCRIP-
TION attribute.

The built-in spell checker marks incorrectly spelled words on the fly by
a dashed line. To correct a word, a context menu with up to ten sugges-
tions can be opened by pressing the right mouse button. If a user diction-
ary has been specified in the MIB Designer preferences (see “Spell
Checking” on page 69) the context menu provides an Add button to add
the selected word into the user dictionary or to always ignore it.

5.2.8 Moving Objects

MIB objects other than textual conventions can be moved upwards or
downwards on their tree level by using <Alt>-<Up> and <Alt>-<Down>
respectively:

1. Moving an object upwards, swaps the object identifier (OID) of the
moved object with its preceding sibling. All OIDs of the objects regis-
tered in the sub-trees of the moved and the preceding object will be
changed accordingly. To move an object upwards, choose
Edit>Move>Up from the main menu or Move>Up from the object
node’s context menu.

2. Moving an object downwards, swaps the object identifier (OID) of the
moved object with its following sibling. All OIDs of the objects regis-
tered in the sub-trees of the moved and the following object will be
changed accordingly. To move an object downwards, choose
Edit>Move>Down from the main menu or Move>Down from the
object node’s context menu.

An addition to MIB objects also import sources can be ordered by moving
them up or down within the /mporss node.

5.2.9 Renumbering Objects

The child objects of a node can be renumbered using the OID increment
set in preferences by using the Subtree>Renumber menu item of the con-
text menu on the parent node. The child objects are then renumbered
starting with one and each next sibbling child node’s last sub-identifier is
assigned the last sub-identifier value of its predecessor plus the value of the
OID increment setting (see “Defaults” on page 69). The descendant ob-
jects below each child are renumbered accordingly.

5.2.10 MIB Object Editing Dialogs

All MIB editor windows are divided into groups that group the properties
of the edited MIB object. The Object Definition group is common to all
node editor windows and contains fields for defining the object that are:

Object Name

The Object Name field specifies the node’s name. The name must start
with a lower case letter for all MIB objects except textual conventions. Tex-
tual conventions must start with an upper case letter. In any case, the name
must be unique with the current MIB module.

When changing a name, all references to that name within the same
MIB module will be changed accordingly. For example, if a name of an in-
dex column is changed, then the INDEX clause of the corresponding table
as well as the OBJECTS clause of all OBJECT-GROUP definitions refer-
encing that columnar object will be changed too.

A default object name for new objects can be specified in the preferences
dialog of MIB Designer. It is recommended to use your companies name
and an abbreviation of the product or purpose that uniquely identifies your
set of MIB objects in order to avoid object name clashes with other MIB
modules.

Object ID

The Object ID field specifies the object identifier assigned to the node.
This property consists of a read-only field denoting the parents object
name (OID prefix) and a changeable field for the node’s OID suffix. In
most cases, this suffix is a single sub-identifier which may be any unsigned
integer value between 0 and 232-1. In some cases it may be necessary to de-
fine a node without defining an object identifier for its direct parent, in
particular when defining a module identity that is not the root node of a
new MIB module.

When changing the OID suffix of a node, MIB Designer will not move
the node to the assigned new location until the user refreshes the view ().
This provides a more easy way of tracking changes.

Please note that the assigned OID must be unique for all nodes. Also it
is allowed to define different names for the same OID by using an OB-
JECT IDENTIFIER construct, it is not wise to do so, because many tools
available today cannot handle this correctly and there is no need for it. Be-
cause of these reasons MIB Designer does not allow defining more than
one name for an OID.

Because registered OIDs must be globally unique, MIB Designer pro-
vides an easy way to check whether an OID is already assigned to any other
MIB module (in the current MIB repository). By clicking on the Object

5 Using MIB Designer

17

18

5.2 Editing a MIB

By holding down the <Ctrl> but-
ton while pressing the Descrip-
tion button, spell checking for the
description field can be invoked
directly from the object editor.

ID button, the current MIB repository will be searched for any occurrence
of the assigned OID for this object. If the edited MIB module has already
been saved to the MIB repository, occurrences in that MIB module will
also been shown, although it is normally save to ignore them.

Status
The status field specifies the validity of the object definition. If the field is

disabled a status cannot be specified for the given node. The status is then
assumed to be current. The possible values for SMIv2 modules are:

» current — The definition is valid.

» deprecated — The definition is valid in limited circumstances, but has
been replaced by another. The new definition typically encompasses a
wider scope, or has been changed for ease implementation.

» obsolete — The definition is not valid. It was found to be flawed; could
not be implemented; was redundant or not useful; or was no longer
relevant.

Reference

The reference field specifies the source of the definition. It may refer to a
document from another standards organization, or an architectural for a
proprietary system. Although only a single line is displayed at once, multi-
ple lines can be entered. By pressing the Reference button a text editor
will open which allows a more comfortable editing of the reference text.

Like the comment editor, text entered in the reference field is back-
ground checked by the built-in spell checker. Misspelled words are marked
by a dashed red underline. Words can be corrected using a suggestion list
of up to ten words by opening a context menu with the right mouse but-
ton.

Description

The description field provides a textual description of the object being de-
fined. By pressing the Description button a text editor will open which al-
lows a more comfortable editing of the description text. In addition, the
edited text is background checked for spelling errors. Misspelled words are
marked by a dashed red underline. Words can be corrected using a sugges-
tion list of up to ten words by opening a context menu with the right
mouse button.

Please note that the above descriptions for the common properties of all
objects are not repeated in the following subsections which describe the
special properties of the respective objects.

Changes made to an object definition will not take affect until the editor
window is closed by pressing the <Save> button. If an editor window is

closed via the <Cancel> button any changes made to the object will be dis-
carded.

5.2.11 Object Identifier

The OID value assignment construct OBJECT IDENTIFIER is used to
assign an OID value to an identifier in the MIB module. It does assign an
object name to an OID, thus the common object definition properties sta-
tus, reference, and description as described in “Moving Objects” on
page 16 are not available for an object identifier definition (see
Figure 2-7). Only an identifier (the object name) and an object ID must
be specified.

SMI allows assigning multiple names to a single OID. It does not allow
registering an OID to multiple object definitions. The former is not rec-
ommended because there currently exist a lot of tools in the SNMP world
that are not capable of handling ambiguous OID to object name map-
pings. MIB Designer will display a warning message when such an assign-
ment is attempted. In case of a duplicate OID registration (done with one
of the editors below), MIB Designer will display an error message and will
not save the definition until the OID is changed to an unregistered one.

% OBJECT IDENTIFIER x|

~Ohject Definition

Ohbject Hame: |51,rstem

|
Object D: 1
|

Status:

| ¥

| Save | | Cancel |

5 Using MIB Designer

Figure2-7: Object identifier editor
window

19

20

5.2 Editing a MIB

Figure2-8: Object-Identity editor
window.

5.2.12 Object Identity
In contrast to an OBJECT IDENTIFIER, an OBJECT-IDENTITY def-

inition uniquely registers an OID value with an object name. A registration
is a permanent assignment of an OID, which means that no other item
may be registered with the same OID value.

An object identity definition supports all the properties listed in “Mov-
ing Objects” on page 16 and can be used to register an OID for an item.
For example, a product, contact information for a sub-tree, or any other
item which need not to be necessarily related to SNMP. The editor win-
dow for an object identity (Figure 2-8) looks similar to the object identifier
window (Figure 2-7), except that the status, reference, and description

fields are editable.

31 OBJECT-IDENTITY

~Ohject Definition

X

0Object Name:

Object ID:

Status:

|athIpTaggingNDScr |

|deprecated - |

| Reference: |

| Description:

This traffic descriptor is for CLP with
tagaing and no Sustained Cell Rate. The usgss
of the parameter vectar for this type:
Fa ter 1: kcell rate i

| Save | ‘ Cancel

x|

This traffic descriptar is for CLP with

tagging and no Sustained Cell Rate. The use

ofthe parameter vectar far this type:

Farameter 1: peak cell rate in cellsfsecond
for CLP=0+1 traffic

Farameter 2: peak cell rate in cellsfsecond
for CLP=0 traffic, excess
tagged as CLP=1

Parameter 3: not uzed

Farameter 4. not used

Parameter 5: notused.

Check spelling... | | Save || Cancel

5.2.13 Module Identity

The MODULE IDENTITY construct is used to specify information
about SMIv2 MIB modules. As any other object definition it consists of
the Object Definition group described in “Moving Objects” on page 16 and
a Module group whose fields are described below (see Figure 2-10). Please
use the Description property to specify copyright and grant of use license
when creating an enterprise specific MIB.

Last-Updated

Specifies the last date and time the current module has been modified in
the ExtUTCTime data type format. The format used is an extended sub-
set of the UTC (coordinated universal time) time format from ASN.1. The
format is [YY]YYMMDDHHmmZ where:

» [YY]YY is the 2 or 4 digit year (using 4 digits is required for years after
1999);

» MM is the month (01 through 12);

» DD is the day (01 through 31);

» HH is the hour (00 through 23);

» mm is the minute (00 through 59); and

» Z is the uppercase letter Z which denotes Greenwich Mean Time

(GMT).

5 Using MIB Designer

Figure2-9: Text editor for a de-
scription field.

21

22

5.2 Editing a MIB

The value of the last-updated field property must be identical to the date
and time from the first revision/description clause, if present. Thus, if there
is at least one revision entered, this field will be updated automatically, oth-
erwise it can be updated to the current date and time by pressing the Up-
date button.

Organization

The organization field specifies the name of the organization that has au-
thority over the definitions created in the current MIB module.

Contact

The contact field specifies contact points for technical information.

Revision/Description

The paired REVISION/DESCRIPTION clauses are optionally used to
specify information about the creation and revision of the module in re-
verse chronological order. In order to add a revision, press the Add button.
A new list entry will be added to the top of the list and the Last-Updated
field will be updated too. The new revision is then edited by pressing the
Edit button. The revision editor window allows freely editing the date and
time of the revision and its description or editing the UTC time by a cal-
endar popup dialog. The popup dialog is opened by clicking on the Revi-
sion button. With the Remove button one or more revisions can be
removed from the list.

If revision control is activated (see section “Exporting MIBs to XML,
HTML, XSD, PDF, and Text” on page 38) in the general preferences
menu, then adding a new revision will lock all objects defined in the cur-
rent MIB module, that have not been locked yet through a previous revi-
sion.

Removing the latest revision will unlock all associated objects, thus all
objects that have been added since the preceding revision. Removing an in-
termediate revision will associate the locks of that revision with the subse-
quently revision.

5 Using MIB Designer

MODULE-IDENTITY B x|

rObject Definition Modul
Object Name: |snmpHiB | Last-Updated: |2Duuuauan1n1z || Update |
Object ID: ‘snmpModuIes | |1 | Organization: |IETF SMMPYE Working Group ‘
Status: ‘currem v| | Contact: | G-EMail: snmpv3@tis.com

Subscribe: majordomaoigtis.com

Reference: In message body: subscribe snmpy3

B ZIHDH

| Description: [The MIB module for SMMP entities. =
Revision Description

Z000060301017 This revision ofthis MIB mo... |~
1095110500002 This revision ofthis MIB mo...
19|9304n10000z The Initial revision of this Ml... ||
4 »

| Add H Edit || Remove |

Figure2-10: Module identity edi-
tor window.

5.2.14 Textual-Convention

TEXTUAL-CONVENTION definitions are used to create a new type. Basic SMiv2 (SNMPv2/v3) data

Since the basic data types supported by SNMP cannot be dynamically ex- types are INTEGER, Integer32,

tended, new types can only be defined by adding constraints to an existing ~ Gauge32, Counter32, Counter64,

base type or a reduction in length of strings. Unsigned32, Olfj ECT IZENT’FIER’
Although the textual-convention editor contains an Object Definition BITS, OCTET STRING, and Opaque.

group (see Figure 2-11), the object name of a textual-convention must

start with an upper case letter. The properties shown by the textual-con-

vention specific group are described below.

TEXTUAL-CONYENTION x|

~Object Definition TEXTUAL CONVENTION
Object Name: [atrnllrmitatwork refix | SRR |OCTET STRING | Edit ‘
Object ID: | | | | Display Hint:
Status: | current b |

| Reference: T Forum, Integrated Local Managernent InterTaceH
(LMl Specification, VYersion 4.0 hd

| Description: W netwoark prefix used for ILMI address —

registration. Inthe case of ATM endsystem
addresses (AESAS), the netwark prefixis the first
13 octets ofthe address which includes the AFI,
|0, and HO-DSP fields. Inthe case of native

(PR3 W} e bl Sine i bl "

Figure2-11: Textual-convention
editor window 23

24

5.2 Editing a MIB

Adding an object import from
within the syntax editor has im-
mediate effect although it can be
undone after the MIB object editor
is closed (regardless whether
changes are saved or not).

Using the context menu is recom-
mended for multi-line comments.

Syntax

The syntax field specifies the type of the syntax. The type string is shown
in a read-only text field without showing possible enumeration or range
values. The complete syntax definition is available by the field’s tool tip.
The syntax definition can be edited by pressing the Edit button. The syn-
tax editor dialog window appears where you can choose from all possible
built-in syntax types, type assignments and textual-conventions that were
imported or were defined in this MIB module.

If you want to use a type assignment (SMIv1) or textual convention
(SMIv2) that is not already imported then you can use the Import button
to select the definition and add it to the modules IMPORTS clause.

Additionally, the syntax editor window lets you specify valid string sizes
and number ranges as well as enumerated values.

When defining enumerated values, you may add associated ASN.1 com-
ments by either using the Comment column of the comment’s context
menu of the Enumeration table.

A scalar type cannot have ranges and enumerated values at the same
time. Non-scalar types, for example OCTET STRING based types, can

have size (“range”) restrictions only.

Display-Hint
The DISPLAY-HINT property, which need not be present, gives a hint as

to how the value of an instance of an object with the syntax defined using
this textual convention might be displayed. It can only be specified for
types that are based on integer or octet string. Please refer to RFC 2579
section 3.1 for further details on the allowed formats.

5.2.15 Object Type

The OBJECT-TYPE construct is used to specify definitions of columnar
and scalar object types, which are also called /eaf objects. The pairing of the
identity of a leaf object (its OID) and the value to identify an instance of
that leaf object is called an SNMP variable. SNMP variables are the oper-
ands and results of SNMP operations.

Figure 2-12 shows the OBJECT-TYPE editor window, like any other
object editor window it contains an Object Definition group and an OB-
JECT-TYPE specific group.

43 0BIECT-TYPE

5 Using MIB Designer

~Object Definition rOB.JECT-TYPE
Ohject Name: Symitax:
Object ID: Max. Access:
Slal | B h Default Value:

Edit...

Choose...

| Reference: Units:
| Description: [The desired state ofthe schedule, -]

1]

Syntax

Specifies the syntax of the object-type in the same manner as the syntax
clause of a textual convention (see subsection “Textual-Convention” on

page 23).

Max-Access

Specifies the maximum allowed access to the leaf object. Possible values
are:

»

not-accessible — The object-type is a column in a table used as an
index (or an index part) and may not be used as an operand in any
operation.

accessible-for-notify — The object-type is special operand for event
report operations.

read-only — The object-type may be an operand in only retrieval and
event report operations.

read-write — The object-type may be an operand in modification,
retrieval, and event report operations.

read-create — The object-type may be operand in modification,
retrieval, and event report operations. Additionally, it may be an oper-
and in a modification operation creating a new instance of the object-

type.

Figure2-12: Object-type
window.

editor

25

26

5.2 Editing a MIB

Default Value

Specifies an acceptable value which may be used when an instance of a row
is created via an SNMP modification request and the object-types value is
not initialized by that request. A default value cannot be specified for index
objects of tables.

For enumerated and BITS syntaxes the default value have to be chosen
from the available values by using the Choose button.

To remove the DEFVAL clause from an OBJECT-TYPE definition
empty the default value field (for enumerated or BITS values use the Clear
button of the default value selection dialog accessible through the Choose
button).

Units

Specifies a textual description of the units associated with the data type.

5.2.16 Table

Two OBJECT-TYPE constructs along with a SEQUENCE construct
specify a definition for SMI table object. An SNMP table contains rows
and columns. A table cannot be an operand or result of an SNMP opera-
tion. Thus, the maximum access for the two object-type constructs defin-
ing a table is not-accessible. Because a table is defined by two object
definitions, the table editor window shown by Figure 2-13 has two Object
Definition groups, named Table and Entry.

5 Using MIB Designer

'3 Table Editor x|
rTahle rindex
Object Name: |athpCrossConnectTable | INDEX - | [Z] Implied length of last index object
Object ID: (R Index Ohjects
Status: | current - | atmypCrossConnectindex
| T | | atmvpCrossConnectlowlfindex
S— atmivpCrossConnectlowh/pi
,W ption: W entry in this table models two |
cross-connected WPLs. d
Each %WPL must have its atmConnkingd set | [Add | | R e | | =1 Choose... |
L]
[
“Caol
rEntry
D Mame ALcess
Object Name: atrrvpCrossConnectEntry | 1 atmypCrossConneg not-accessible
2 atmypCrossCanneg|not-accessible
Ohject ID: 1
] 4 3 atmypCrossCanneg|not-accessible
Status: 4 atrrvpCrossConneg not-accessible
|__Reference: | | 5 atrmipCrossConneg not-accessible
Description: Recanfiguration of trafficisenice category pga | f atmpCrossConneg read-create
values requires release ofthe VP cross-co 7 atrmpCrossConneg read-only
hefore those parameter values may by chanzs | 4
for individual ¥PLs - P
< D Goadd || OFEdt || i Remove |

By convention the name for the table object definition ends with “Table”
and the name for the entry (row) object ends with “Entry”.

The description property of the table object should describe the infor-
mation in the table or its usage as well as estimations on the maximum
number of rows and any objects whose values are associated with the table.

The description property of the entry (row) object should document
whether rows can be created or deleted via SNMP operations, and if so,
then what is required for this to happen. It should supplement the descrip-
tion of the RowStatus object of such a table.

Index / Augments

The INDEX / AUGMENTS property specifies how rows are indexed in
the table. The INDEX clause lists the ordered index items for a table. Typ-
ically, the index items are names of not-accessible columns in the table. If
a table consists of index columns only, then the last index column has to
be read-only. In addition, read-only index columns are allowed when port-
ing SMIvl MIB modules to SMIv2.

The AUGMENTS clause documents a special relationship between two
tables. The item specified is the entry object of another table, the base table.

Figure2-13: Table editor window

27

28

5.2 Editing a MIB

For every row in the augmenting table there has to be exactly one corre-
sponding row in the base table with the same index value.

The total length of all index-sub-identifiers plus the length of the OB-
JECT-TYPE’s OID must not exceed 128 sub-identifiers.

Implied Length of Last Index Object

This may be only specified for index objects whose base type is a varying
length string (i.e., OCTET STRING and Opaque) or an object identifier.

The rows in a table are ordered by the value of the table’s indices. If an in-
dex object has a varying length string base type, its contribution to the in-
dex OID is built by n+1 sub-identifiers, where the first sub-identifier is the
length of the string and each following sub-identifier is the ASCII value of
the corresponding character of the string. If a string or an object identifier
has a fixed length then sub-identifier denoting the length is omitted. This
can be forced by checking the IMPLIED property for the last sub-index.

The index objects for the table can be easily chosen using a shuffle dialog
which is opened by pressing the Choose button.

Sub-index values with IMPLIED length must have at least one sub-
identifier.

Columns

The Columns group specifies the columns that are part of the table. In or-
der to add (append) a column to the table, press the Add button below the
columns overview table. A column may then be moved within the table by
editing its OID. A column may be modified by selecting it and then press-
ing the Edit button. As usual, one or more columns may be removed from
the table by selecting the appropriate row(s) in the columns table and then
pressing the Remove button.

5.2.17 Notification
The NOTIFICATION-TYPE construct is used to specify the events that

can be reported by an agent (i.e., a notification originator). The OID value
assigned to a notification-type is sent with a notification in order to iden-
tify it. Figure 2-14 shows the notification-type editor window with its Ob-
ject Definition and Objects group.

Objects

The optional OBJECTS clause can be used to specify one or more scalar
or columnar objects whose values describe the event. Objects can be added
and removed from the notification-type definition by pressing the Choose
or the Remove button respectively. Alternatively, you may press Choose

to open a shuffle dialog with which you can choose the objects that must
be at least provided with a notification.

By clicking on the right table’s header of shuffle dialog you may sort the
objects in ascending or descending order.

4 NOTIFICATION-TYPE

5 Using MIB Designer

rObject Definiti

Object Name: |\manWn \

Object ID: E

rObjects

Ohjects |
ifindex

ithdminStatus

[fOperStatus |

Status: | current -

| Reference:
| Description: (linkDown trap signifies thatthe SNMP entity, acting in [~

an agent rale, has detected that the ifOperStatus ohject for
one of its communication links is about to enter the down
state from some other state (but not from the notPresent
state). This other state is indicated by the included value
or fOpersatys.

- &1 Choose... || i3 Remove |

5.2.18 Group
The OBJECT-GROUP and NOTIFICATION-GROUP constructs are

used to define a collection of related object type definitions and notifica-
tion type definitions respectively. Consequently, both editor windows are
very similar. They consist of an Object Definition group and an Objects
group.

Every object type with a value for the MAX-ACCESS clause other than
“not-accessible” must be a member of at least one object group. A similar
rule applies to notifications. Each notification type must be a member of
at least one notification group.

Objects

The Objects group specifies one or more scalar or columnar objects that
are related to each other. Objects can be added and removed by pressing
the Choose or the Remove button respectively. The Choose button
opens a shuffle dialog which can be used to add all or any subset of avail-
able objects to the group. Analogous to the objects editor of the NOTIFI-
CATION-TYPE construct, objects may be sorted in ascending or
descending alphabetical order.

Please note that the object types grouped through an OBJECT-
GROUP should conform to the status clause of that object group defini-

tion.

Figure2-14: Notification-type ed-
itor window.

29

30

5.2 Editing a MIB

x
~Object Definition ~Object
Object Name: ‘lanmleanceB | Modules |

Status:

5.2.19 Module Compliance
The MODULE-COMPLIANCE construct is used to convey a minimum

set of requirements with respect to implementation of one or more MIB
modules. Besides the Object Definition group, the module compliance ed-
itor window (Figure 2-15) contains an Objects group which can be used to
specify a list of MIB modules for which the module compliance statement
defines requirements.

Modules

Specifies a non-empty list of MIB modules for which compliance require-
ments are being specified. Each MIB module is named by its module name
which can be selected from a combo box, which is shown when clicking on
a list item. The module name may be (left) blank to refer to the encom-
passing MIB module. The details of a compliance requirement can be ed-
ited by selecting the corresponding module name and then pressing the
Edit button.

EN

‘ current - |

| Reference:

|m [The compliance staternent for SMMP entities |~

network interfaces.

ol = Choose... || % Remove || ¥ Edit.. ‘

Figure2-15: Module compliance
editor window

The requirements for a compliant implementation of a module can then

be edited with the dialog window shown by Figure 2-16.

Mandatory Groups

The Mandatory Groups clause specifies a possibly empty list of names of
object or notification groups within the correspondent MIB module which
are unconditionally mandatory for implementation.

5 Using MIB Designer

Conditional Groups and Exceptions

Specifies a mix of the following two types of items:

1. Object and notification groups which are conditionally mandatory for
compliance to the MIB module. In addition, unconditionally optional
groups can be specified. In any case a group specified as being condi-
tional must not be listed in the mandatory groups property at the same
time.

2. MIB objects for which compliance has a refined requirement with
respect to the MIB module definition. The refinement details for a list
entry are shown in the Dezails group of the dialog window when the
entry is selected (see Figure 2-16). The details can then be edited. The
description property must be given. All other properties are optional
and can be specified by checking the box on the right side of the prop-
erty label. The required syntax and write-syntax are edited as described
in section “Textual-Convention” on page 23.

% Compliance Module: IF-MIB |
¥ Groups G iti Groups or E: i
Groups | | robiects -Details

ifGeneralinformationGroup

Caond. Groups and Exceptions : iFixedLengthGrou
linkUpDownMotificationsGroup |i|'F' L :lhﬁ 3 Group: Bl P
ixedLengthGroup
ifHCFiedLengthGroup Syntax:
iPacketGroup Write-Syntax:

iHCGPacketGroup

ifHCPacketGroup
ifCounterDiscontinuityGroup
ifRevAddressGroup

Min-Access:

[This group is mandatory farthose ne &
jare charac ted or transmit da)
transmmission units, and for which thi
corresponding instance of ifBpeed i
20,000,000 bitsisecond.

| Description:

‘ =l Choose... ‘

[Group ‘ ‘ [Exception

4] [»]

Figure2-16: Window for editing
implementation requirements de-

5.2.20 Agent Capabilities tails.
The AGENT-CAPABILITIES construct is used to specify implementa-

tion characteristics of an SNMP agent sub-system with respect to object
types and events.

‘ &} Remove ‘

Product-Release

The Product-Release field contains a textual description of the product re-
lease which includes this set of capabilities.

32

5.2 Editing a MIB

Supported Modules

The Supported Modules clause specifies a possibly empty list of MIB mod-
ules for which the agent claims a complete or partial implementation. De-
tails about the implementation of a module can be edited by selecting it
and then pressing the Edit button.

51
rProduct Release
AGEMT++v3.4.7 -
4 I
Object Definition rSupported Modules:
Object Name: |agenmpElui\tlnCap:;34? | Madulas
[srmPvz-miB =
Object ID: 2 SNMP-TARGET-MIB :
SHMP-MOTIFICATION-MIB
Status: |currem v ‘
SHMP-COMMUMNITY-MIB
| Reference: SNMP-MPD-MIB

SMMP-USER-BASED-SM-MIB

SMMP-VIEW-BASED-ACM-MIB

| Description: WEENT++ huilt-in capabilities for the 3.4.7 rel| 4| SMMP-PROXT-MIE

SNMP-FRAMEWORK-MIB
AGENTPP-SIMULATION-MIE
BN

(o] Tmsmanss

e vl | | <l Choose... | | il

Figure2-17: Agent-capabilities
editor window

The details about a module implementation can be edited by using the di-
alog window shown by Figure 2-18.

Includes

The Includes field specifies a non-empty list of MIB groups associated with
this supported MIB module which the agent claims to implement.

Variations

The Variations field specifies a possibly empty list of objects or notifica-
tions which the agent implements in some variant or refined fashion with
respect to the correspondent OBJECT-TYPE or NOTIFICATION-
TYPE definition. In order to edit the refinement details of such an object
or notification, select the corresponding object name and details will be
shown in the Dezails group where they can be modified too.

5 Using MIB Designer

l
Includes: Wariations
Groups rOhjects: | Details
systemGraup pr— |
atiations iation: coldStart
snmpGraun Variation:
[coldstart |
snmpsetGroup Syntax: (]

snmpBasichotificationsGroup 5
snmpCommunityGroup Write-Syntax: (|
Access: 0

Default Value: [

|m (b coldStart frap is generated onall |+
reboots. B

4] Dl

reation Requires

| =3 Choose... |
&3 ChoDSE... | | | & Choose... ‘ ‘ i} Remove ‘
{3} Remove
‘ {3} Remove |
Save Cancel
Figure2-18: Supported module
editor window.

5.2.21 MiIB-Tree Colors and Icons
The node label colors in the MIB tree have the following meaning:

» Black denotes a not-accessible or accessible-for-notify MIB object as
well as textual conventions or type assignments.

» Gray denotes a read-only MIB object type.
»
» Blue denotes a read-write MIB object type.
» Red denotes a read-create MIB object type.
»

By checking the option “Use SMI object type specific tree icons” under
Preferences>View, object type specific tree icons are displayed instead of
the default tree icons of the used Look&Feel. The icons displayed repre-
sent the following SMI object types:

» A SMIv2 MODULE-IDENTITY definition.
1 Scalar OBJECT-TYPE definition.

» Tabular OBJECT-TYPE definition characterized by a SYN-
TAX clause using “SEQUENCE OF”.

34

5.3 Built-in Spell Checking

s P Table entry OBJECT-TYPE definition that defines the

INDEX and columns of a conceptual table row.
ﬁ] » A columnar OBJECT-TYPE definition.
i1 » An SMIv2 OBJECT-IDENTITY definition.

T » A SMIv2 TEXTUAL-CONVENTION definition or SMIvl
" type definition.

o3, » An OBJECT-GROUP definition.
[=]
(@ * AnSMIv2 NOTIFICATION-TYPE ora SMIvl TRAP-TYPE

definition.
'55,1.5. » A NOTIFICATION-GROUP definition.
[_[l': » A MODULE-COMPLIANCE definition.
» An AGENT-CAPABILITIES definition.

5.3 Built-in Spell Checking

MIB Designer contains a built-in spell checker that is available for any text
input field within the object editors. The spell checker contains an Amer-
ican English main lexicon containing more than 100,000 words as well as
a British English main lexicon also containing more than 100,000 words.
Besides these lexicons, a user dictionary may be specified within the Ed-
it>Preferences... (E:) dialog, that can be used by a MIB author to extend
the above dictionaries.

Text input fields are background checked and misspelled words are
marked by a dashed red underline. By pressing the right mouse button over
a (misspelled) word, a context provides a selection of up to ten correction
suggestions. In addition, if a user dictionary has been specified, the selected
word can be added to the user dictionary or ignored always.

The spell checker dialog can be invoked wherever the label for a text in-
put field is a button (see also “Moving Objects” on page 16). By holding
down the <Ctrl> key when pressing the label button, the spell checking for
the text in the text input field is started. If the spell checking encounters an
error the window shown by Figure 2-19 will pop up. It allows ignoring, re-
placing, changing, or learning the word in question.

By just pressing the label button, a text editor window can be opened
that provides a more convenient way to edit extensive texts. In addition,
that window has a button to start spell checking as well.

If the Add button is insensitive then the file for the user dictionary has
not yet been specified within the preferences dialog.

Check Spelling x|
kot in dictionary: ’W
|ifEntries |
Change to: Ignore All
|ifEntries | | Change |
Suggestions:
ifEntries B Change All
infantries 15 | S
dietaties —|
Add words to: Add

CAmIBDesigner tlx

5.4 Finding MIB Objects

MIB Designer has the capability of searching the current MIB module or
the whole MIB repository by a given regular expression. The search dialog
shown by “Finding MIB Objects” on page 35 is accessed by choosing Ed-
it>Find from the main menu (), which will search the current MIB
module or by choosing Edit>Search MIB Repository (see “Search MIB
Repository for Importing Objects” on page 35), which will search the
whole MIB repository.

Objects are searched by matching the given regular expression with the
objects’ attributes that have been checked. By checking A//, the whole SMI
text, including key words, shown in a node’s preview is matched against
the given regular expression.]

When using the Edit>Find... menu or button the MIB tree is
searched from its root until the first matching node is found. The next
matching node can then be found by using the Edit>Find Again menu or
button. Please note that Find Again always starts searching at the cur-
rently selected node in depth first order.

5.4.1 Search MIB Repository for Importing Objects

By searching the MIB repository using Edit>Search MIB Repository the
search results will be displayed in a table. Each row in the table represents
a MIB object that matched the given search criteria. By selecting one or
more rows and then pressing the Import Selected button, those objects

5 Using MIB Designer

Figure2-19: Spell checking dia-
log.

MIB Designer uses Perl 5 regular
expressions which are described
in the documentation of the GNU
regular expression library docu-
mentation that is distributed with
MIB Designer.

Figure2-20: Finding a MIB object.

‘4 Find MIB Dbject x|
Search Expression: .*agerllpp."| -

[¥l lgnore case

Search: Al

) Object IDs
(@ Object Names
) Descriptions

35

36

5.4 Finding MIB Objects

are added to the IMPORTS clause of the currently edited MIB module. If
an object is already imported by the current module, a warning message
will be displayed. If an object is a TRAP-TYPE or NOTIFICATION-
TYPE an error message will be displayed, since those objects cannot be im-
ported by a MIB module.

In addition to the search options available by the Find MIB Object di-
alog shown by “MIB repository selection dialog” on page 6, the search di-
alog for the searching the MIB Repository provides the search option
Imports which allows to search import references. This option searches ref-
erences in IMPORT, MODULE-COMPLUANCE, and AGENT-CA-
PABILITIES clauses that match the specified search pattern. To narrow
the search results to references of a certain set of MIB modules, a search

pattern for MIB module names followed by a colon (%:") may be prepend-
ed.

5.4.2 Search MIB Repository for References

To avoid inconsistencies when editing a set of MIB modules, it is often
useful to be able to search for references to a MIB object in other MIB
modules. MIB Designer provides this feature through the menu item
Search References in the context menu of a MIB object.

The MIB modules in the MIB repository are searched for any references
(by IMPORT clauses) to the selected MIB object. All matched MIB mod-
ules and the referring objects are listed in the displayed search result dialog.
By selecting one or more list items, the corresponding MIB modules can
be opened for editing.

5.4.3 Navigate Between MIB Objects

An easy navigation between the recently visited MIB objects is provided
through the Forward (§>) and Back (<g) buttons on the tool bar as well as
the corresponding menu items in the View menu.

To navigate to the adjacent MIB objects of a selected node, the “Show
object navigation links” option from the View preferences can be used.
When activated, this option displays navigation links within the SMI pre-
view window. The object links are displayed as ASN.1 comments and the
underlined object names of the adjacent objects can be clicked.

5.4.4 Refactor Object Names and Descriptions

When the name of an organization or product changes, it can be necessary
to change the object names of a sub-tree when creating a new MIB module
for the new organization or product that should include the old objects
with new names for backward compatibility.

The Search and Replace function of MIB Designer can be used to re-
place object names and/or descriptions by a regular expression.

To search and replace object names and/or descriptions in a sub-tree of
a MIB module, select th root of the sub-tree in the MIB tree and then
choose Edit->Replace () menu. A dialog that is similar to the search di-
alog shown by Figure 2-20 is displayed. The search option for OIDs is dis-
abled, because it is better (and easier) to change OIDs by rearranging sub-
trees with Copy & Paste, Drag & Drop, or changing a sub-tree OID by
editing a MIB object.

Enter the search expression in the search field and the replacement ex-
pression or string into the replace field. The replace expression may con-
tain regular expression group references ($1, $2 etc.) to include parts of the
matching string into the replacement string.

For each match found, you will be asked whether it should be replaced
or skipped. When an object is locked, because it has already been released,
it will not be included in the search result. If you choose to replace all oc-
currences you can undo (and redo) all replacements at once. Otherwise
undo is available step by step.

5.5 MIB Validation

A MIB module can be checked for errors at any time by choosing
View>Check from the main menu (b). If the current MIB has any errors
then they will be shown in the errors table below the SMI preview and the
MIB object containing the first (selected) error is selected in the MIB tree.
The error location is then highlighted in the node’s SMI preview.

5.6 Saving and Exporting a MIB

The current MIB module can be saved by choosing File>Save from the
main menu (), which saves the module into the current MIB repository.
The MIB is not checked for errors.

In order to be able to use a MIB outside MIB Designer, it is necessary
to export it as a text file. This is done by choosing File>Export as... from
the main menu (alternatively: Bl). You will be prompted for a file name
which could be every valid file name on the used operating system, how-
ever, a default name is provided for convenience.

The preview function of MIB Designer (View>Preview, <Ctrl-P>, ﬁ)
not only provides a preview of the whole SMI definition of the current
MIB module, further more, it can be used to export it to HTML.
Figure 2-21, for example, shows a detail of the preview for the ATM-MIB.

5 Using MIB Designer

Do not change OIDs of released
MIB objects as this would violate
SMl rules and break existing appli-
cations.

37

38

5.6 Saving and Exporting a MIB

Figure2-21: Example SMI preview
(ATM MIB).

Note: Any files that already exist in
the destination directory might be
overwritten without warning!

s Preview of ATM-MIB

e L

AtmVorEOper3tatus,
atmloClpNoScr
FROM ATM-TC-MIE;

Byl

atnMIE MODULE-IDEHTITY
LAST-UPDATED "9510151200z"
ORGANIZATION "ITETF ATol MIB Working Group”
COHTACT-IHFO
"Kaj Tesink
Postal: Bellcore
331 Wewman Springs Road
Red Bank, mJ 07701

Tel: TIE-TEE-5254

Fax: TIE-TEE-2289

E-mail: kaj@bsllcore.com”
DESCRIPTIOH

"This is the MIE MNodule for ATM and AALS-related
objects for managing ATW interfaces, ATW virtual
links, ATMN cross-connects, AALS entities, and
and AALS connections.”

REVISION "4953101912002"

DESCRIPTIOH

[4]

"The dnpitigl revisdon of this modils was publishsad

| »

| oK || Save asHTML... |

5.6.1 Exporting MIBs to XML, HTML, XSD, PDF, and Text

MIB modules can be exported from the MIB repository as XML, XML

Schema (XSD), HTML, PDF, or plain text files. The text colors that can

be set for printing (see “Printing a MIB module” on page 39) and syntax

highlighting of the MIB file editor apply also to the PDF export function.
To export a set of MIB modules:

1. Choose Export MIBs from the File menu.
2. Choose the file format for the exported MIB modules.

3. Select the MIBs to export from the list of available modules and press
the Add button to add them to the list of modules to be exported.

4. Choose the destination directory.

Press OK to start the export operation. Each MIB module will be
exported to a file, whose name will be the MIB modules name concat-
enated with one of the suffixes .txt, .html, .xml, .xsd or
.pdf.

6. When exporting to PDF, you will be now prompted by an additional
dialog for page layout and other document settings. You can choose
the page size, footer, outline structure and font size. Press OK to export
the selected MIBs with the selected settings.

5.7 Printing a MIB module

The current MIB module can be printed with syntax highlighting by
choosing Print from the File menu. The operating systems print dialog will
be opened, where printer and pages to be printed can be specified. The
MIB file is printed black-and-white with header, footer, and line numbers
by default. To change these settings go to the MIB Designer preferences
dialog and select the Printing tab.

5.8 MIB File Editor

The current MIB module can be edited as a text file by choosing MIB File
Editor from the Edit menu. The MIB File Editor is opened (see
Figure 2-2). The editor has the usual capabilities of a text editor including
undo and redo. In addition it has four special features that are explained in
the following paragraphs.

5.8.1 Checking a MIB File

By choosing Check (SMI Standard) from the File menu the MIB file is
checked for syntax errors that violate the SMIv1 or SMIv2 standard respec-
tively. The file is not saved automatically while it is checked. In case syntax
errors have been found they are displayed in the error list.

By choosing Check (Leniently) from the File menu the MIB file is
checked for fundamental syntax errors. The file is not saved automatically
while it is checked. In case syntax errors have been found they are displayed
in the error list.

5.8.2 Saving and Compiling a MIB File

By choosing Import MIB () from the editor’s File menu the edited file
is saved and compiled. If compilation fails, then the contained MIB mod-
ule will not be imported into MIB Designer. Instead an error text will be
displayed in the text area below the editor’s tool bar. On successful compi-
lation, the MIB module will be stored in the MIB repository and loaded.
At the same time the editor window will be closed.

The default above method to import a MIB uses the syntax checking
that is configured in MIB Designer preferences. In order to use a specific
level of syntax checking, i.e. either the SMI standard check or a lenient syn-
tax check.

5 Using MIB Designer

39

5.8 MIB File Editor

Note: The shown completion al-
ternatives are based on syntax
analysis only. Semantically, some
of those alternatives may not
make any sense. This will be, how-
ever, reported by the validation
checks which need to be run man-
ually. See “MIB Validation” on
page 37.

40

In order to import a MIB file with SMI standard syntax checking, use
the green import icon (&) or the corresponding menu item in the File
menu.

In order to import a MIB file with lenient syntax checking, use the yel-
low import icon (&) or the corresponding menu item in the File menu.

5.8.3 Auto Syntax Completion

The syntax completion works similar to the code completion features of
many Java or C++ IDEs. By pressing <Ctr1>-<Space> atany position
in the edited text, MIB Designer shows possible replacements for the token
under to cursor.

If there is only a single possible replacement then the text under the cur-
sor will be replaced with it. If that is not what you wanted you need to press
<Ctrl>-Z to undo the operation. Otherwise, the possible completions
will be displayed in a popup dialog. An entry can be applied by double
clicking on it or pressing <Enter>.

The completion alternatives are listed in alphabetically ordered. You can
jump within the list by typing the first letter of the entry you search. From
the possible replacements listed below only those are displayed that would
syntactically fit at the cursor position:

» SMI tokens like DESCRIPTION, SYNTAX, read-write, etc.
» Lowercase names of the MIB module edited

» Uppercase names of the MIB module edited

» 0 as placeholder for a positive number including zero

» 1 as placeholder for a positive number excluding zero

» /Db as placeholder for a binary string constant

» " h as placeholder for a hexadecimal string constant

» “255d" as placeholder for an OCTET STRING DISPLAY-HINT

format definition

» “d” as placeholder for an DISPLAY-HINT format specification of a
numeric SMI variable.

» ™ ™ as placeholder for a character string constant.

» "YYYYMMDDhhmmZ" representing the current date and time in
ExtUTCTime format. See “Last-Updated” on page 21.

If the contents of the edited MIB file cannot be analyzed, lower- and upper
case names cannot be listed. Instead, the placeholders 1owerCaseName
and UpperCaseName are displayed.

5.8.4 Printing with Syntax Highlighting

To print the MIB file loaded into the MIB File Editor, choose Print (E')
from the editor’s File menu. See also section “Exporting MIBs to XML,
HTML, XSD, PDF, and Text” on page 38.

5.8.5 Search and Replace by Regular Expressions

A powerful way to make modifications to a MIB file is searching and re-
placing by regular expression. Section “Regular Expression Syntax” on
page 80 gives a brief description of regular expression syntax. _

To search a MIB file by a regular expression, choose Find () from the
Edit menu. Enter the expression to search for in the opened dialog. The
combo box will remember ten expressions used last. _

To search and replace found matches, choose Replace () from the
Edit menu. Enter the search expression and the substitution expression and
press OK. A matched region in the MIB file will be selected and a confir-
mation dialog will be shown. Each substitution can be confirmed individ-
ually or all substitutions can be confirmed at once.

The substitution string may contain variable interpolations referring to
the saved parenthesized groups of the search pattern. A variable interpola-
tion is denoted by $7, or $2, or $3, etc. It is easiest to explain what an in-
terpolated variable does by giving an example:

Suppose you have the pattern b\d+: and you want to substitute the b's
fora's and the colon for a dash in parts of your input matching the pattern.
You can do this by changing the pattern to b(\d+): and using the substitu-
tion expression a$1-. When a substitution is made, the $1 means "Substi-
tute whatever was matched by the first saved group of the matching
pattern.” An input of b123: after substitution would yield a result of a123-

Many common errors in MIB files can be corrected by using the RE search
and replace function. Here are three examples:

1. INTEGER may only be used for enumerations in SMIv2. To replace
INTEGER by Integer32 for other definitions use:
Search Expression: (\s+) INTEGER (\s+) (?!\{)
Substitution Expression:
$1Integer3252

2. Within SEQUENCE constructs sub typing (i.e. range or size restric-
tion) is not allowed. To delete such sub typing in SEQEUNCE con-
structs use (enter search expression as single line without spaces):
Search Expression:

(\n\s*[a-z] [a-2zA-Z0-9] *\s*\n*\s+
[A-Z] [a=2zA-Z0-9]1*\s* [A-Z] *) \s*\ (\s*

5 Using MIB Designer

41

42

5.8 MIB File Editor

((\d+.*) | (STZE\s*\ (.*\)))\)

Substitution Expression:

$1
. The under bar “_” character is not allowed in enumeration labels. To
delete the “_” and change the following letter to uppercase use:

Search Expression:
([a-z] [a-zA-Z0-9]1%*) ([a-zA-Z0-9]+\s*\ (\d+\))
Substitution Expression:

$1\u$2

6 MiIB Design

This section contains descriptions, explanations, and solutions for the top
ten MIB Design errors. These issues have been collected over years from
support questions and consulting projects. Soon it turned out, that a few
misunderstandings of the Structure of Management Information RFCs
produce a majority of over 80% of the syntax errors. This section should
help MIB authors to identify and avoid these, unfortunately very common,
errors in order to increase interoperability and usability of SNMP based so-
lutions.

Readers are encouraged to view also the following documents:
Y Guidelines for Authors and Reviewers of MIB Documents (RFC 4181).

» Configuring Networks and Devices with Simple Network Management
Protocol (SNMP), section 3, Designing a MIB Module (RFC 3512).

Why do so many (enterprise) MIB modules contain syntax errors and oth-
er design flaws? The main reason is probably, a lack of good MIB design
tools (editors and compilers) in the early years of SNMP. MIB authors re-
lied on inaccurate implementations of MIB parsers that were not devel-
oped to do strict syntax and semantic checking but rather designed to be
error-forgiving. With an increasing number of available SNMP tools, in-
teroperability problems also increased caused by the diversity of different
error checking levels and capabilities.

Another reason for many interoperability issues is likely to be the “bad
habit” of many MIB compilers and tools to provide customizable error re-
porting levels allowing users to disable reporting of errors/warnings al-
though these errors - or even more worse - warnings report SMI standard
violations.

MIB Designer fills this gap with an unreached combination of a SMI
conforming MIB compiler with strict syntax checking and an intuitive
graphical user interface. MIB Designer has only two levels of syntax check-
ing: lenient and SMI standard. With the second level you can be sure to
avoid interoperability issues caused by SMI standard violations. The le-
nient level should be used to more easily fix a MIB module on/)!

The following list of common MIB Design issues is by far not complete by
means of a complete collection of MIB design errors or pitfalls. Neverthe-
less it tries to shed some light on the most commonly made and fewest un-
derstood errors:

» Every SMIv2 MIB module must define exactly one MODULE-
IDENTITY immediately following IMPORTS.

6 MIB Design

43

44

6 MIB Design

» Descriptors must start with a lower case letter and MIB module names
and type or textual convention definitions names with an upper case
letter.

» In SMIv2 sub-typing and enumerating values are forbidden in

SEQUENCE clauses.
» Descriptors must not contain underscore (°_") characters

» The ASN.1 primitive type INTEGER’ should only be used for

named-number lists in SMIv2.

» Every accessible OBJECT- and every NOTIFICATION-TYPE defini-
tion must be contained in at least one object group.

» The ExtUTCTime format used for LAST-UPDATED and REVI-
SION clauses is [YY] YYMMDDhhmmZ.

» A TEXTUAL-CONVENTION cannot refer to a previously defined
TEXTUAL-CONVENTION.

» The elements in a SEQUENCE clause must match a table’s lexico-
graphic ordered columns exactly.

» Mixing SMIvl and SMIv2 constructs and clauses in the same MIB
module.

The SMiv2 MODULE-IDENTITY mustimmediately follow the
IMPORTS construct:

RFC 2578 §3 requires that every SMIv2 MIB module starts with a MOD-
ULE-IDENTITY construct (immediately following the IMPORTS
clause). Because the Structure of Management Information (SMI) lacks ex-
plicit versioning, the absence or presence of the MODULE-IDENTITY is
the only usable indication for a SMI parser whether a module is written for
SMI version 1 (MODULE-IDENTITY is absent) or version 2 (MOD-
ULE-IDENTITY is present). Probably caused by some MIB compilers
that cannot handle object identifier forward referencing correctly, some
MIB authors do not place the MODULE-IDENTITY immediately fol-
lowing the IMPORTS clause as shown be the example below.

6 MIB Design

BAD-MODULE-TIDENTITY-MIE DEFIHITIONS ::= BEGIN

TMPORTS
enterprises FROM SNMPvZ-SMI:

hibDesignDonts OBJECT IDENTIFIER ::= { enterprises }
wibDesignDontsRey OBJECT IDENTIFIER ::= { mibDesigmbDonts 1 }

nibDesignbontsRegtIE MIDULE-IDENTITY
LAST-UPDATED 300405201 0128"
ORGRNIZATION MAGENT++"
CONTACT-THEO
"Internet: hitp:/Aww.agentpp. com
Rttp: /e, pibdesioner. co
Rt tp: /A, ibexplorer. con
Epail: fockfagentpp.com”
DESCRIPTION
"This MIE module illustrates a typical error when
defining SMIvi MIB modules. A correct MIB SMIvz
module would have placed this MODULE-IDENTINE
immediately following the
IMPORTS enterprises FROM SNMPvZ-SMI:

i (ibbectonbanehes 1) o
Figure2-22: MODULE-IDENTITY
does not immediately follow IM-

The attentive reader will have recognized a second error in the above ex- PORTS

ample: The missing import of the MODULE-IDENTITY macro (see
RFC 2578 §3.2).

MIB parsers that differentiate between SMIvl and SMIv2 (what any
validating MIB parser should) will report an error about the unexpected
MODULE-IDENTITY construct in the above example. A correct version
of the above MIB module would read as follows:

46

6 MIB Design

All comments (green text) in this
example are optional and need
not to be present. In fact some old
or buggy MIB compilers have
problems correctly recognize the
end of comments. The end of a
comment is either marked by two
consecutive hyphens () or the
end of the line. The first should be
avoided for maximum interopera-
bility.

Figure2-23: Legal placement of
the MODULE-IEDENTITY con-
struct.

LEGAL-MODULE-IDENTITY-IIE DEFINITIONS ::= BEGIN

IMPORTS
enterprises,
MODULE - IDEHTITY
FROM SNMPv2-5MI;

nibDesimDosRegHIE MODULE-IDENTITY
LAST-UPDATED "2004092010123" —- Sep 20, 2004 10:12:00 AN
ORGANIZATION "AGENT++"
CONTACT-IHED
"Internst: hbtp:/Ana, agentpp. con
kttp: v, mibdesigner. con
kttp: AAma, aibexplorar. com
Email: Fock@agentpp. con™
DESCRIPTION
"Ihis MIE module illustrates s correct MIB SMIVZ
rodule where the MODULE-IDENTITY
immediately follows the IMPORTS clause.™

REVISTION "2004052010128" -~ Sep 20, 2004 10:12:00 AM
DESCRIPTION
"The initial versiom."
-~ 1.3.6.1.4.1.4976.1.1 —— ::= { enterprises }

-- Alternatively also
-- { mibDesignDos 1 } or

-- { enterprises mibDesignDos(4876) mibDesignDosReg(l) 1 }
-- would have been valid, but these variants could cause
- incowpatibility issues with some broken MIE compilers.

wibDesignbos OBJECT IDENTIFIER
-- 1.3.6.1.4.1.4876 -~ ::= { enterprises }

nibDesimbosRey OBJECT IDENTIFIER
-~ 1.3.6.1.4.1.4976.1 —— ::= { nibDesignDos 1 }

EHD

Descriptors start with a lower case letter whereas module
names with an upper case letter:

Descriptors, i.e., object names, enumeration labels, have to start with a
lower case letter. MIB module names and type names, i.e., names of TEX-
TUAL-CONVENTIONSs and SEQUENCE:s, have to start with an upper
case letter. For more details see RFC 2578 §3.1.

In SMiv2 sub-typing and enumerating values are forbidden
in SEQUENCE clauses:

RFC 2578 §7.1.12 requires that syntax clauses of the subordinate objects
do not contain sub-typing or enumeration of values. Consequently the red
marked content have to be removed from the following conceptual row
definition example in order to be valid SMIv2:

nibdesimInvalidsequenceEntry OBJECT-TYPE

SYNTRX MibdesignInvalidfequenceEntry

MAX-ICCESS not-accessible

STATUS current

DESCRIPTION
"Example of & conceptual row with invelid sub—t¥ping
and smumerated valuss in SEQUENCE clause.™

INDEX {
nibdesimInvalidSequence IndexRovClass,
nibdesignInvalidSequencelndexRange }

—- 1.3.6.1.4.1.4976.1.2.1 - ::= { mibdesigmInvalidSequenceTahle 1 }
MibdesignInvalidSequenceEntry ::= SEQUEHCE {
nibdesigninvalidsequenceIndexRovClass 1

romilasaOne (1],
rowClassTwo(2) 1|,
wibdesignlnvalidiequenceIndexRange (1..100 3

nibdesignInvalidSequencelndexRovClass OBJECT-TYPE
SYNTRX {
rowClassine (1],
rowClassTua (2] }
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An sxample indsx with two possible valuss that
distinguish between two classes of rows."
-- 1.3.6.1.4.1.4976.1.2.1.1 -- ::= { nibdesimInvalidSequenceEntry 1 }

nibdesignInvalidSequencelndexRange OBJECT-TYPE
SYNTRX (1..100)
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"Example index with range restriction.”
—- 1.3.6.1.4.1.4976.1.2.1.2 —— ::= { nibdesignInvalidSequenceEntry 2 }

The underscore (‘_’) and in SMiv2 the hyphen (*-') character
are forbidden in descriptors:

Descriptors (including identifiers like MIB module names and type
names) must not contain other characters than:

abcdefghijklmnopgrstuvwzxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 -

The hyphen (°-) is only allowed in MIB module names and for SMIv1 de-
scriptors and identifiers (e.g. enumeration labels). In SMIv2, hyphens are
only allowed if the MIB module was converted from SMIv1 (which is hard
to prove by a MIB compiler). Hyphens in enumeration labels are not al-
lowed in SMIv2. In any case a descriptor or identifier must not end with a
hyphen. One reason for the latter, might be easier mapping of enumera-
tion labels to programming languages, where the hyphen is commonly in-
terpreted as minus sign.

6 MIB Design

In this example, only the red
marked portions are invalid. The
object names for the OBJECT-
TYPE definitions have been cho-
sen to have a common prefix as
recommended by RFC 2578, that
is unique (by best effort) across
other MIB modules. For this exam-
ple, the common prefix is “mibde-
signinvalidSequence”.

Figure2-24: Sub-typing in a SE-
QUENCE clause is not allowed.

47

48

6 MIB Design

The text “INTEGER MAX-ACCESS”
was marked by MIB Designer be-
cause it expected a range restric-
tion but found “MAX-ACCESS".

Figure2-25: Use INTEGER for enu-
merated values only.

The ASN.1 primitive type ‘INTEGER’ should only be used for
named-number lists in SMiv2:

Although RFC 2578 not explicitly forbids using the INTEGER primitive
type for (non-enumerated) integer types, it is recommended to use
Integer32 for such type definitions instead. When ignoring this recom-
mendation, one has to add a range restriction on the INTEGER primitive
type, to narrow its value range at least to -2147483648 to 2147483647
which is a requirement by RFC 2576 (Coexistence between Version 1,
Version 2, and Version 3 of the Internet-standard Network Management
Framework) §2.1.1.

This restriction seems to be unnecessary because INTEGER and
Integer32 are indistinguishable on the wire, but theoretically the ASN.1
primitive type can represent values outside the above range. RFC 2576
probably tried to avoid misunderstandings by MIB readers familiar with
ASN.1 about the possible value range of such types. Future enhancements
regarding 64bit signed INTEGER values might have been also a motiva-
tion for this rule.

The following example illustrates this typical error. The error is solved
simply by replacing “INTEGER” with “Integer32” in the first red marked

row:

mibdesignbonts OBJECT-TYPE

SYHTAX INTEGER

MAX-ACCESS read-only

STATUS current

DESCRIPTIOH
"The INTEGER synmtax should be used only for
enumerated values. For other values, IntegerdZ
should be used instead. In any case INTEGER
must not be used without a range restriction that
narrows the values ramge to 3Zbit."

-= 1.3.6.1.4.1.4076.1.1 == ::= { mibdesignbontsChiects 1 }

Every accessible OBJECT- and every NOTIFICATION-TYPE
definition must be contained in at least one object group:

RFC 2580 §3.1 and $§4.1 respectively require that each accessible OB-
JECT-TYPE definition must be contained in at least one OBJECT-
GROUP definition and every NOTIFICATION-TYPE definition must
be contained in at least one NOTIFICATION-GROUP definition. These
requirements assure that every object of a MIB module can referenced by
a compliance statement.

This kind of error is usually introduced in a MIB module when a new
object is added and the MIB author forgets to add it to a group.

6 MIB Design

MIB Designer offers the option to import a MIB module with a lenient
MIB compiler mode and then adding the missing object group entries by
using a shuffle dialog that shows the unassigned OBJECT-TYPEs or NO-
TIFICATION-TYPE: respectively.

The ExtUTCTime format used for LAST-UPDATED and REVI-
SION clauses is [YY]YYMMDDhhmmZ:

The correct format for the LAST-UPDATED and REVISION fields is as
follows (see RFC 2578 §2):

YYMMDDhhmmZ or

YYYYMMDDhhmmZ

where the elements of the above have the following meaning:
» YY - last two digits of year (only years between 1900-1999)
» YYYY - last four digits of the year (any year)
» MM - month (01 through 12)
» DD - day of month (01 through 31)
» hh - hours (00 through 23)
» mm - minutes (00 through 59)

» 7 - the character Z, which denotes GMT, must always be present.

A TEXTUAL-CONVENTION cannot refer to a previously de-
fined TEXTUAL-CONVENTION:

RFEC 2579 §3.5 requires that the SYNTAX clause of a TEXTUAL-CON-
VENTION refers to SMIv2 base types only. Thus, it is an error to derive
a TEXTUAL-CONVENTION from another TC as the following exam-

ple shows:
AppnTOSPrecedence ::= TEXTUAL-CONVEHTIOH
STATUS curren T
DESCRIPTION
"3 DisplayString representing the setiing of the three TOS
Precedence bits in the IP Type of Service field for this APPN
traffic type. The HER over IP architecture specifies the
following default mapping:
APPN trafific type IP T08 Precedence biis
Network 10
High F
Medium 23]

Low o0i
LLC commands, etc. 110

SYNTAX DisplayString (SIZE(3))

Figure2-26: Textual convention
derived from another.

49

50

6 MIB Design

Figure2-27: Legal textual con-
vention “derivation”.

Figure2-28: Type derivation.

The above TEXTUAL-CONVENTION would have been correctly de-
fined as follows:

AppnTO3Precedence ::= TEXTUAL-CONVENTION
DISPLAY-HINT "z55a"
STATUS current
DESCRIPTION
"3 DisplayString representing the setting of the three TOS
Irecedence bits in the IP Typs of Service fisld for this AFRN
traffic type. The HPR over IF architecture specifies the
following default mapping:
APEN traffic type IP TS Precedsnce bits
Hetwork 110
High 100
Medium o010

Low 001
LLC commands, etc. i

SYNTAX OCTET STRING {3IZE (3]

Since ASN.1 allows type assignments to derive types from other types an
evil-minded MIB author could think about defining AppnTOSPrece-
dence as follows:

AppnTOZPrecedence ::= DisplayString [SIZE(3))

Although this would be legal, it is not recommended for the following rea-
sons:

1. There cannot be associated any parsable information to an ASN.1 type
assignment. In the above example important information included in
the description clause would be lost.

2. RFC 2576 §2.1.1 demands that all ASN.1 type assignments should be
converted to TEXTUAL-CONVENTION definitions in a SMIv2
MIB module.

3. Although MIB Designer can resolve such derivation chains even across
several MIB modules, some MIB compilers cannot which could cause
interoperability issues. For example, there are MIB compilers that
would not recognize that AppnTOSPrecedence in the above example

has inherited the DISPLAY-HINT “255a” from DisplayString.

The elements in a SEQUENCE clause must match a table’s
lexicographic ordered columns exactly:

RFC 2578 §7.1.12 requires that for every columnar object of a conceptual
table definition a corresponding entry is present in the SEQUENCE clause
defining the syntax of the conceptual row of the table. The entries in the
SEQUENCE clause must appear in the lexicographic order of the colum-
nar objects (thus ordered by their last sub-identifier). Normally this is not

problematic, since most MIB authors order the columns by the last sub-
identifier. But if this is not the case, for example if columns have been add-
ed by a new revision of a MIB module, then attention has to paid on the
order of the elements in the corresponding SEQUENCE clause.

The following example illustrates an error caused by wrong ordering of
the SEQUENCE elements. To correct the error, one would have to swap
mibdesignDontsInvalidSeqCol3 and mibdesignDontsInvalidSeqCol2 en-
tries as indicated by the red boxes. Changing the sub-identifiers of those
columns is not allowed by a revision, because this would change the behav-
ior of the table on the wire.

appedrance in the MIB file."
::= { nibdesignbontsObjects 3 }

nibdesignbontsInvalidSeqEntry OBJECT-TYPE

SYNTIX MibdesimbDontsInvalidSeqEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"The conceptual rew definition refersncing the
invalid SEQUENCE definitiom."

THDEX {
nibdesignbontsInvalidgeqColl }

1= { mibdesigmbDontsInvalidSeqTable 1 }

MibdesimbontsInvalidSeqEntry ::= SEQUENCE {
nibdesignbontsInvalidseqColl
nibdesimbontsInvalidseqCol
nibdesignbontsInvalidseqColz '

nibdesignbontsInvalidgeqColl OBJECT-TYPE
SYNTRX
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"First column and index."
::= { nibdesigbontsInvalidSeqEntry 1 }

nibdesignbontsInvalidgeqCol3 OBJECT-TYPE
SYNTRX
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The third column, appearing at second positiom."
::= { nibdesigbontsInvalidSeqEntry 5 }

nibdesignbontsInvalidgeqColz OBJECT-TYPE
SYNTRX
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Sscond column, appearing at third position.”
::= { nibdesigbontsInvalidSeqEntry 2 }

Mixing SMIv1 and SMIv2 constructs and clauses in the same
MIB module:

RFC 2578 §3 explicitly forbids the usage of SMIvl macro definitions in
SMIv2 modules. The usage of SMIv2 constructs like TEXTUAL-CON-
VENTION is forbidden in SMIv1 too. These kind of errors often occur
when manually converting a module from one version to another and
when the MIB parser/compiler used to check the conversion result does
not properly distinguish between SMIv1 and SMIv2.

MIB Designer clearly distinguishes between SMIv1 and SMIv2 and will

reliably report such errors. In addition, it provides automatic conversion

6 MIB Design

Figure2-29: Inconsistent order of
column objects in SEQUENCE and
sub-tree.

51

52

6 MIB Design

from SMIv2 to SMIv1. See REC 3584 for situations where an automatic
conversion is not completely possible.

Any new SNMP MIB module should be written in SMIv2 (the corre-
sponding RFCs 2578, 2579, and 2580 are STANDARD). That’s why
MIB Designer focusses on SMIv2 and does not allow to write new MIB
modules in SMIv1. Nevertheless, MIB Designer warns MIB author’s when
defining a NOTIFICATION-TYPE that is not backward-compatible
with SMIv1 and SNMPv1 (see RFC 3584 §3 for details), because the NO-
TIFICATION-TYPE’s second to last sub-identifier is not zero. Although
RFC 3584 defines a mapping for such notifications to SNMPv1 traps, it
is wise to avoid such notification definitions for better interoperability.

Text must contain 7bit ASCIl characters only

For interoperability, SMI does not allow using UTF-8 and other non-7bit-
ASCII characters except newline (CR and LF), tab characters (e.g. TAB),
and spaces (see RFC 2578 §3.1.1). This rule applies to all clauses with text
enclosed in double quotes, like DESCRIPTION, CONTACT-INFO,
and REVISION for instance.

7 Revision Control

Even a released MIB module that is already used by many sites may require
maintenance over time. According to the SMI rules, changes to a released
MIB module are subject to some restrictions which guarantee that changes
are compatible with existing implementations of that MIB specification.
Although MIB Designer cannot enforce all of these restrictions, it provides
powerful means to prevent users from making incompatible changes.
MIB Designer has a revision control mechanism that can be activated
via the Edit>Preferences menu. When this mechanism is activated, a re-
vision of a MIB module may be released by adding a revision note to its
MODULE-IDENTITY construct (see Figure 2-9). Whenever a MIB
module revision is being released, all objects new to that revision will be
locked. Locked objects are shown in the MIB tree with underlined object
name. The restrictions that apply to locked objects are listed below:

» OID and object name may not be changed.

» Objects may not be moved within the MIB tree nor removed from the
MIB.

» The only way to delete an object is to set its status to obsolete. If a
table’s status is set to obsolete, then MIB Designer will set the status of
all columns to obsolete too. All objects referencing obsolete objects must
also have an obsolete status.

» Descriptions may only be changed for clarification. The behavior of
the object may not be changed.

» Object lists which are part of OBJECT-GROUP, NOTIFICTION-
GROUP, NOTIFICATIONS, MODULE-COMPLIANCE, and
AGENT-CAPABILITIES may not be changed. The INDEX clause of

a table may not be changed neither.

» The SYNTAX clause of TEXTUAL-CONVENTION or OBJECT-
TYPE definitions may be changed only if it is an enumeration. Then,
new enumerations may be added. Existing labels may be changed only
for clarification purposes.

Objects added to a MIB module after it has been released, are not subject
to any restrictions. These objects are displayed not underlined in the MIB
tree and may be directly edited with the SMI editor.

7 Revision Control

53

54

7 Revision Control

Unlocking a SMiv2 MIB will re-
move all information about which
objects belong to which revision.
To retain this information, the lat-
est revision information can be re-
moved from the MODULE-
IDENTITY construct instead.

If revision control is enabled, all MIB modules imported into MIB De-
signer’s repository will be locked. Sometimes it might be useful to edit an
imported module as if it has not been released yet, for example, if the MIB
module has never been released yet and has been imported by MIB De-
signer. The Extra>Unlock MIB menu can then be used to unlock the MIB.

Since SMIv1 modules do not have a MODULE-IDENTITY construct,
the revision control is very limited. Nevertheless, the Extra>Lock MIB
menu can be used to entirely lock a MIB.

8 MIB Comparison

MIB Designer may be used to visually compare MIB modules. This un-
equaled feature shows the differences between two MIB modules indepen-
dently from their formatting. It provides an easy way of tracking the
differences between releases of MIB modules.

In order to be able to compare two MIBs, they must be named differ-
ently and both opened. If both MIBs have to same module name, then
they can be imported one after the other. In doing so, the first MIB mod-
ule imported should be the older revision of the MIB and saved under a
different name before the second one is imported.

The current MIB module may be compared with any other loaded MIB
module by selecting the Extra>Compare... menu item. After selecting the
comparative MIB module the objects of the current module that differ
from objects of that module will be displayed with an altered background
color in the MIB tree as shown by Figure 2-30.

MIB Designer —|o] x|
File Edt View Extra Tools Help
CoE@Esceld B&d PaA® FhIEOE B8 E
1B 4
E’ AGENTH-MIE-COMPARE = -~ Parenc: agenescomnection
L
(3 Imports -~ Previous: agentxfonnTableLastChange
[=}- [z Objerts -= Faxt: £l tienEntry - Fibbling qeceID
Bl mib-2
. agentxtonnectionTable DBJECT-TEEE
= EagentxMIB . SENTAX SEQUENCE OF AgentxCormectionEntry
BB agentxObjects HRY-BOCESS not-accessible
B[agentxGenet: STRTUS cuzzant
Lo DESCRIPTION
H "Tiee £ dionTable dracks 2!l currem, + Agent
comnectionc. Thezs may be sess, ome, or more Agent

E

cerricd on @ given Agemid conmectiom.

1:= { agentulonmectisn 2)

[E1- (25 agentxConnectionEntry
o[] agentxConnindex
= D agentxConnCpenTime
b D agentxConnTransportCy
S D agentzConnTransport A

0
(= agentxSessian
¢ {7 agentxsessionTablel astChange
== agentxSessionTable
[} agentxSessionEntry
- D agentxSessionIndex
>D agentxSessionObjectID)
D agentxSessionDescr
b D agentxSessionAdminsta
D agentxsessionOpenTim
>D agentxSessionAgentxy
B D agentzSessionTimeout
agentxRegistration

[«]

AGENT=-MIB AGENTX-MIB-COMPARE[’i

The colors have the following meanings:

8 MIB Comparison

Figure2-30: Example Compari-
son of two AGENTX-MIBs

55

56

8 MIB Comparison

» Green — The object has been added to the current module, thus it is
not part of the comparative module.

» Yellow — The object differs from the corresponding object of the com-
parative module.

» Magenta — The object has been changed in an incompatible way, for
example, an OBJECT-TYPE has been changed into an OBJECT-
IDENTIFIER. Thus, magenta indicates obvious violations of SMI
rules.

» Black — The object has been deleted by changing its STATUS to 0bso-
lete.

For yellow and dark gray colored objects only, parts that differ from the
corresponding comparative object are shown in the SMI preview as under-
lined text (provided that HTML preview is enabled). An object and its
comparative counterpart can be displayed side by side by choosing the
Show menu item from the object node’s context menu.

The results of a comparison can be cleared for the current module by
choosing Extra>Clear Comparison from the main menu.

9 SMI Conversion

Within the Extra menu, MIB Designer provides automated SMI version
conversion between SMIv1 and SMIv2 and vice versa. Although a fully au-
tomated conversion is not possible (and eligible), MIB Designer can save
a lot of repetitive work.

9.1 SMiv1 to SMiv2

To convert a SMIvl MIB module to SMIv2, choose Extra->Convert to
SMIv2. Because SMIv2 requires a MODULE-IDENTITY construct, the
following wizard dialog prompts for a parent OID of all objects to be cre-
ated by the conversion, including the MODULE-IDENTITY construct.

If necessary, an OBJECT-GROUP and a NOTIFICATION-GROUP
are created too.

The conversion compromises the steps set forth below. Not all steps can
be performed fully automated. The list below is largley along the lines with
the steps listed in §2.10f RFC3584, however it is grouped by the level of

manual interventation needed for each step.

9.1.1 Fully Automated

The following conversion steps are fully automated by MIB Designer and
do not need manual interventation.

1. The IMPORTS statement references SNMPv2-SMI, instead of
RFC1155-SMI and RFC-1212.

2. For any object with a SYNTAX clause value of Counter, the object’s
SYNTAX clause is changed to Counter32.

3. For any object with a SYNTAX clause value of Gauge, the object’s
SYNTAX clause is changed to Gauge32. If Gauge32 is not the appro-
priate for type, it can be changed to Unsinged32 can be manually after
the conversion.

4. For all objects, the ACCESS clause is be replaced by a MAX-ACCESS
clause. If the value of the ACCESS clause is "write-only", then the
value of the MAX-ACCESS clause is set to "read-write".

5. For all objects, if the value of the STATUS clause is "mandatory” or
"optional” it is set to "current” or "obsolete” respectively. Depending
on the usage of the object, its STATUS might have to be set to “depre-
cated” manually after the conversion.

6. If any INDEX clause contains a reference to an object with a syntax of
NetworkAddress, then a new object is be created and placed in this

9 SMI Conversion

57

58

9.1 SMIv1 to SMiIv2

Note that the use of NetworkAd-
dress in new MIB documents is
strongly discouraged (in fact, new
MIB documents should be written
using SMiv2, which does not de-
fine NetworkAddress).

INDEX clause immediately preceding the object whose syntax is Net-
workAddress. This new object has a syntax of INTEGER, it is not-

accessible, and its value is limited to the value 1.

7. For any object with a SYNTAX of NetworkAddress, the SYNTAX is
be changed to IpAddress.

8. An OBJECT-GROUP is defined, and related object types are collected
into that group - if there are any. Otherwise, the group object is not

defined.

9. A NOTIFICATION-GROUP? is defined, and related notification
types are collected into that group - if there are any. Otherwise,
thgroup object is not defined.

10.For any object with an integer-valued SYNTAX clause, in which the
corresponding INTEGER does not have a range restriction (i.e., the
INTEGER has neither a defined set of named-number enumerations
nor an assignment of lower- and upper-bounds on its value), a range
restriction is added to the object.

11.The value of an invocation of the NOTIFICATION-TYPE macro is
an OBJECT IDENTIFIER, not an INTEGER, and is be changed
accordingly. The value of the invocation is the value of the ENTER-
PRISE clause extended with two sub-identifiers, the first of which has
the value 0, and the second has the value of the invocation of the
TRAP-TYPE.
An empty DESCRIPTION clause is be added, if not already present.
The ENTERPRISE clause is removed. The VARIABLES clause is
renamed to the OBJECTS clause. A STATUS clause with value “cur-
rent” is added. If this value is not appropriate for the objects usage
then you should replace it by "deprecated” or “obsolete” as needed.

9.1.2 Manual Intervention or Review Needed

1. The MODULE-IDENTITY macro must be invoked immediately
after any IMPORTS statement. You will have to specify the parent
OID of the MODULE-IDENTITY construct in the wizard and then
edit its DESCRIPTION, CONTACT, etc. clauses manually after-

wards.

2. For any object not containing a DESCRIPTION clause, an empty
DESCRIPTION clause is defined which needs to be filled manually

after the conversion.

9.1.3 Not Supported

The following steps necessary for a conversion from SMIv1 to SMIv2 ac-
cording to RFC 3584 are not supported by the conversion wizard. These
steps have to be performed manually after conversion - if necessary:

1.

For object types for which instances can be explicitly created by a pro-
tocol set operation, their object type’s MAX-ACCESS clause is
replaced by "read-create”.

For any object corresponding to a conceptual row which does not have
an INDEX clause, the object must have either an INDEX clause or an
AUGMENTS clause defined. Although a missing INDEX clause is
detected by the SMI check, it cannot be automatically corrected by
MIB Designer.

For any object containing a DEFVAL clause with an OBJECT
IDENTIFIER value which is expressed as a collection of sub-
identifiers, the value must be changed to reference a single ASN.1
identifier. This may require defining a series of new administrative
assignments (OBJECT IDENTIFIERSs) in order to define the single
ASN.1 identifier.

For any non-columnar object that is instanced as if it were immedi-
ately subordinate to a conceptual row, the value of the STATUS clause
of that object must be changed to "obsolete". MIB Designer reports
such an issue in its SMI check, but does not correct it automatically.

. For any conceptual row object that is not immediately subordinate to

a conceptual table, the value of the STATUS clause of that object (and
all subordinate objects) must be changed to "obsolete”". MIB Designer
reports such an issue in its SMI check, but does not correct it automat-
ically.

. All textual conventions informally defined in the MIB module should

be redefined using the TEXTUAL-CONVENTION macro. Such a
change would not necessitate deprecating objects previously defined
using an informal textual convention.

For any object which represents a measurement in some kind of units,
a UNITS clause should be added to the definition of that object.

. For any conceptual row which is an extension of another conceptual

row, i.e., for which subordinate columnar objects both exist and are
identified via the same semantics as the other conceptual row, an

AUGMENTS clause should be used in place of the INDEX clause for
the object corresponding to the conceptual row which is an extension.

9 SMI Conversion

59

60

9.2 SMIv2 to SMiv1

9.2 SMiv2 to SMiv1

Although the conversion of a MIB module from SMIv2 to SMIv1 can be
almost fully automated, some information gets lost. MODULE-IDENTI-
TY, OBJECT-GROUPs and NOTIFICATION-GROUPs definitions
have to be removed from the MIB module, for example.

This conversion can be useful if a system does not support SMIv2 and
that system cannot be changed to support it.

To convert a SMIv2 MIB module to SMIv1, choose Extra->Convert to
SMIv1. The conversion compromises the steps set forth below.

9.2.1 Fully Automated

1. The MODULE-IDENTITY construct is replaced by an OBJECT
IDENTIFIER.

2. All OBJECT-GROUP, NOTIFICATION-GROUP, and AGENT-
CAPABILITIES constructs are removed.

3. For all object types, the MAX-ACCESS clause is replaced by a
ACCESS clause. A value of “read-create” is replaced by “read-write”.

4. For any object with a STATUS clause of value “current” its value is
replaced by “mandatory”.

5. For any object type with an AUGMENTS clause, that clause is
replaced by an INDEX clause with the value of the INDEX clause of
the referenced conceptual table.

6. All invocations of the TEXTUAL-CONVENTION macro are

replaced by an informally defined textual convention.
7. Any UNITS clause is removed from the definition of that object.

8. The IMPORTS statement references RFC1155-SMI and RFC-1212,
instead of SNMPv2-SMI.

9. For any object with a SYNTAX clause value of Counter32, the object’s
SYNTAX clause is changed to Counter.

10.For any object with a SYNTAX clause value of Gauge32, the object’s
SYNTAX clause is changed to Gauge.

11.For any object with a SYNTAX clause value of Unsinged32, the
object’s SYNTAX clause is changed to Unsigned.

12.Any object with a SYNTAX clause value of Counter64 is removed.

13.The value of an invocation of the TRAPE-TYPE macro is an INTE-
GER, not an OBJECT IDENTIFIER, and is be changed accordingly.

The ENTERPRISE clause is added. The OBJECTS clause is renamed
to the VARIABLES clause. The STATUS clause is removed.

14.For any object with a SYNTAX clause value of “BITS” is replaced by
“OCTET STRING” and a corresponding DEFVAL clause is con-

verted from enumerated bit names to a hex string.

9.2.2 Not Supported

1. If the object identifier of a notification type has a second to last sub-
identifier which is not zero, that notifcation type cannot be used with
SMIvl.

2. If a notification type refers to an object type with effective syntax of
Counter64, that notification type cannot be used with SMIv1.

9 SMI Conversion

61

62

10 Correction

10 Correction

MIB Designer provides some auto correction functions for ease of correc-
tion of common SMIv2 errors.

10.1 Index Range Correction

A numeric value used for an index must not have a negative value because
a negative value cannot be represented by an OID sub-identifier. There-
fore, all syntax definitions used for an index value, must have a range re-
striction which allows positive values only (including zero). This
correction adds missing range restrictions or changes existing to exclude
negative values for sub-index values.

10.2 INTEGER Usage Correction

The INTEGER type should be used for enumerations only in SMIv2.
Thus, this correction changes occurrences of INTEGER to Integer32
where it is not part of an enumeration definition.

10.3 Case Correction

The SMI standard specifies the case of the first letter of descriptors (see
“Descriptors start with a lower case letter whereas module names with an
upper case letter:” on page 46).

Object identifiers have to start with a lower case letter, whereas SE-
QUENCE and MIB module descriptors have to start with an upper case
letter, for example. Using an upper case letter as the first character of an
enumeration descriptor is also a common error. Here a lower case letter is
required.

The case correction function corrects the case of the first letter of de-
scriptors.

10.4 SMI Macro Import Correction

The SMI specification language is derived from ASN.1. Although it is not
ASN.1, it has inherited and used the ASN.1 MACRO elements. Because
of that, macro definitions in the SMI standard have to be imported when
used. The OBJECT-TYPE macro for instance, has to be imported from
RFC1155-SMI (SMlIv1) or SNMPv2-SMI (SMIv2) respectively.

This auto-correction function removes unecessary macro imports and
adds any imports for used macros.

11 Tools

11.1 Tool Configuration

External tools like a PDF viewer, SNMP tool, or code generator program
like AgenPro 2 can be easily integrated with MIB Designer. Choose
Tools>Configure from the main menu to configure an external program
for usage with MIB Designer with the dialog shown on the left.

In the above example, four tools have been configured. Each tool is list-
ed by its title and gets populated in the Tools>Run Tool menu by the same
order as displayed in the configuration dialog.

To add a new tool, press the Add button and the Tool Editor dialog will

be displayed where the tool can be defined by the following properties:

» A title (required), which is displayed under the Tools>Run Tool
menu.

» The path of the tool’s executable (required).

» An optional list of command line parameters. To allow a closer cou-
pling between MIB Designer and external tool, a set of macros can be
used in the parameter field. For an overview about available macros see
the table below.

» An optional working directory for the external tool.

11 Tools

AQenPro Edit
SHMP 4.

e |
Dump MIB M
|

Figure2-31: Tool Configuration

63

11.1 Tool Configuration

MACRO Description
SMODULE_NAME 1 his macro will be replaced by the currently edited M1B

module name when the tool is executed.
SMODULE_AS_H I ML_FlLE|=<moduleName>| 1 he current module (or the M1B module with the specltied

name after the optional = sign) is exported as a HTML file
into a temporary file. The macro is then replaced by the file
name of the temporary file on the tool’s command line.

SMODULE_AS_PDF_FILE|=<moduleName>| Same as above, except that the MIB module is exported as a
PDF file.

SMODULE_AS_1X1_FlLE|=<moduleName>| Same as above, except that the MIB module is exported as a
plain text file.

SMODULE_AS_XML_FlILE[=<moduleName>| Same as above, except that the MIB module is exported as a
XML file.

SMODULE_AS_XSD_FILE|=<moduleName> | Same as above, except that the MIB module is exported as a
XML schema file.

SREPOSITORY 1'his macro is replaced by the path to the MIB repository of

MIB Designer. This macro can be used to run command

line versions of MIB Explorer and AgenPro 2.
SOELECILED_OID 1 his macro i1s replaced by the object identitier ot the cur-

rently selected node in the MIB tree of the edited MIB mod-
ule. If the node does not have an OID (e.g. a textual
convention) then “0.0” is inserted instead.

Table 1: Macros for the tool

configuration. . . .
To remove a tool from the configuration, select the tool in the list and press

the Remove button. To change the order of the tools in the run menu, se-
lect a tool and press the Move Up or Move Down button.

The tables that follow provide a few example tool configurations that
might be helpful illustrate the capabilities of the tool integration interface.

» The PDF viewer tool will use Adobe® Acrobat® to view the cur-
rently edited MIB module in its PDF representation.

» The SNMP4JCLT Sub-Tree Browser walks the sub-tree speci-
fied by the object identifier of the selected node in MIB Designer’s
MIB tree by using GETBULK SNMPv2c requests. The target SNMP
agent is the localhost on port 161. The community used is “pub-
lic’. For more information on the command line parameters of
SNMP4] see the snmp4jclt usage.txt file.

» On a Windows system, the Dump HOST-RESOURCES-MIB tool
dumps the text of the HOST-RESOURCES-MIB into the MIB
Designer tool log.

» The AGENT++ Stub Generation tool executes AgenPro with
the current MIB module name as the code generation project name.
Of course, one needs to create and save the project under that name by

11 Tools

using the AgenPro GUI before one can successfully run the tool.
When MIB Designer and the AgenPro project share the same MIB
repository, this tool definition automates the stub generation process.

Title
Program
Parameters

Working Directory

Title
Program

Parameters

Working Directory

Title
Program
Parameters

Working Directory

Title
Program
Parameters

Working Directory

PDF Viewer
C:\Program Files\Adobe\Acrobat 7.0\Acrobat\Acrobat.exe
SMODULE AS PDF FILE

Table 2: Example configuration
for a PDF Viewer.

SNMP4JCLT Sub-Tree Browser

/usr/bin/java

-jar SNMP4J-CLT.jar -c public -v 2c -L ,<License>"“ <Key>
walk udp:127.0.0.1/161 SSELECTED OID

~/snmp4jclt

Table 3: Example tool
configuration for SNMP4JCLT
sub-tree browsing. Note: You have
to provide your MIB Designer
license and key on first execution.
The license has to be enclosed in
double quotes. For more help run
»~jar SNMP4-CLT jar help”.

Dump HOST-RESOURCES-MIB
C:\WINDOWS\SYSTEM32\CMD.EXE
/C type $MODULE AS TXT FILE=HOST-RESOURCES-MIB

Table 4: Example tool
configuration for dumping a MIB
module to the console.

AGENT++ Stub Generation
/home/agentpp/agenpro2/agenpro.sh
projects/SMODULE NAME.prj
/home/agentpp/agenpro?2

Table 5: Example tool
configuration for generating stub
code with AgenPro by using a
project file named by the current
MIB modules name.

65

66

11.2 Tool Execution

11.2 Tool Execution

To execute a tool, choose it from the Tools>Run Tools sub-menu. If there
are no items in the sub-menu, no tools have been defined yet. See section
“Tool Configuration” on page 63 for a description on how to configure
tools then. The first ten configured tools can be directly run by pressing
<Alt>+<1> through <Alt>+<9> and <Alt>+<0>.

Tools are executed synchronously. Thus, MIB Designer will not re-
spond to key and mouse events until the executed tool as been terminated.
The output of the last tool run is displayed in the lower right panel where
MIB Designer also displays SMI checker error messages. If the executed
process (tool) generated any output on stdout, the output will be dis-
played with blue foreground. If it generated output on stderr, then the
output will be displayed with orange foreground.

12 Preferences

With the preferences dialog application wide settings can be defined and
the behavior of MIB Designer can be customized. The individual settings
are described in the following sections. By pressing the Save button any
changes made to the preferences will be applied (except Look&Feel chang-
es) and MIB Designer will then scan the MIB repository for available MIB
modules. You can continue work while scanning or close the progress dia-
log if you do not want to wait until the scan is finished.

12.1 General

The general preferences section provides three sections for MIB compiler,
MIB generation, and other settings.

12.1.1 MIB Compiler

The number of errors recorded during MIB compilation for each MIB file
can be limited by the Maximum Errors / MIB File setting. If a MIB module
contains more than the specified number of errors, those additional errors
will not be displayed until either one of the displayed errors get fixed or the
value is increased.

12.1.2 MIB Generation

The MIB Generation settings define how MIB modules are generated
from the data imported into MIB Designer and/or entered in the same.

» Generate MIB Designer Comments - Adds ASN.1 comments for
object identifiers and UTC time values to generated MIB modules.
This option makes the MIB modules more readable and it is recom-
mended to activate this option.

» Generate OID Comments Inline - In order to save output lines, the
OID comments can be generated into the same line where the OID
value assignment is placed. Activating this option can lead to interop-
erability problems with third party MIB compilers that cannot handle
ASN.1 comment closing correctly.

» Automatically Import SMI Macros - Imports SMI macros like
OBJECT-TYPE, OBJECT-GROUP, etc. automatically from the
appropriate MIB modules, when a MIB module is checked or saved.

» Preserve Original Order of Imported Objects - Preserves the order of
MIB objects in a compiled MIB module file, when it is regenerated.

12 Preferences

67

12.2 Repository

Subsequently added objects will be placed at the end of the MIB mod-

ule.

Order Generated Objects by Type First - Ensures that the objects are
ordered by their type first. Within each category the order is deter-
mined by an eventually enabled preserve option (above) and the lexi-
cographic ordering of the object’s OID. The order of object type

categories is as follows:

» MODULE-IDENTITY

» TEXTUAL-CONVENTION

» OBJECT-IDENTIFIER, OBJECT-TYPE, OBJECT-IDENTITY
» TRAP-TYPE, NOTIFICATION-TYPE

» OBJECT-GROUP

» NOTIFICATION-GROUP

» MODULE-COMPLIANCE

» AGENT-CAPABILITIES

12.1.3 Other Options
» Open MIB in New Pane - When enabled, new MIB modules are

opened in a new pane, otherwise they will be opened in the current
pane if available.

Revision control - Enables revision control, which prevents acciden-
tally modification of already released MIB objects (see section MIB
Maintenance and Revision Control).

Warn for Unsaved Changes - Warns if a changed MIB module is
closed or if MIB Designer is closed while there are changed MIB mod-

ules.

» Warn before overwriting files - Warns if MIB Designer tries to over-

write an existing file.

12.2 Repository

The Repository setting defines the directory to store compiled MIB mod-
ules, see also section “Creating a MIB Repository” on page 6.

» Compress compiled MIB modules in repository - When this option

is selected (default), the compiled MIB modules will be GZIP com-
pressed stored in the MIB repository to save disk space. When you
share the MIB repository with AgenPro prior to v2.5 or MIB Explorer

prior to v2.5, then deactivate this option, in order to be able to read it
with those tools.

12.3 View

12.3.1 Look & Feel

The Look & Feel setting determines the overall appearance of MIB De-
signer. There are several built-in look and feels that you can choose from.
MIB Designer needs to be restarted before changes will take effect.

» Use SMI object type specific icons - When activated (default), the
node icons displayed in the MIB tree reflect the type of the SMI object
represented by the node. See also “MIB-Tree Colors and Icons” on
page 33. When deactivated, the tree icons of the current look&feel are
used.

12.3.2 Other View Settings

» Font size of preview text - With the slider you can specify the relative
font size for the SMI preview window.

» Use n spaces instead of tabs - When displaying and exporting MIB
files tabulators are used by default to indent text. Instead of using tab-
ulators, the specified number of spaces can be used for indentation.

12.4 Spell Checking

In order to be able to enhance the built-in dictionary, you will have to spec-
ify a custom dictionary which can be any new file.

12.5 Defaults

For new object creation, default values can be specified for common at-
tributes of SMI objects. Specifying a default value can ease object creation.
Default values can be specified for the following attributes:

» Object name - Defines the default object name for new objects. It is
recommended to set this value to the mnemonic of your company or
organization. You will then only have to append the individual object
name when creating new objects.

» OID increment - Some organizations prefer to leave holes in object
numbering to be able to insert objects at later time (otherwise they
could only be appended on the same level). The default is 1 which
leaves no holes.

12 Preferences

70

12.6 Syntax Highlighting

» Syntax - The default syntax should be set to the syntax of the majority
of your MIB objects to facilitate editing, for example OCTET-
STRING.

» Access - The default access for new OBJECT-TYPE definitions.

12.6 Syntax Highlighting

The syntax highlighting settings defines if and with which colors SMI text
is to be highlighted by the MIB file editor and when MIB modules are
printed or exported to PDF.

12.7 Printing

» Print colored - If checked, syntax highlighted text is printed with the
colors defined in “Syntax Highlighting” preferences. Otherwise only
the text styles defined therein are used.

» Print header - Prints the MIB module name as header.
» Print footer - Prints footer with print date and page number.

» Print line number - Prints line numbers.

13 Trouble-Shooting

This section provides information and guidance on how to approach the
following issues:

» License information is not accepted.

» MIB file does not compile.

» How to increase the maximum memory size for MIB Designer.

» MIB objects seem to be read-only.

» SMI compiler reports error 1000 without an error description.

» How to get support if MIB Designer hangs or otherwise does not

work as expected.

License Information Is Not Accepted

If you enter your license information and the license gets rejected with
“The current license information invalid!” then please check the following:

» Is the Java Runtime Environment installation of version 1.5 or later
and correctly installed? You can check this by running
java -version
from the command line.

» Use Copy&Paste to enter the license key value in order to avoid typing
errors. License keys are case sensitive.

» If you are using a temporary license then check the system time.

MIB File Does Not Compile

When a MIB file does not compile because of syntax errors then follow the
steps below to resolve the errors:

1. Look up the error code in section “Error Messages” on page 74.

2. Try to understand the error and correct it with the MIB editor
described in section “MIB File Editor” on page 39.

3. If you do not understand why MIB Designer reports an error then
consult section “MIB Design” on page 43 about common MIB design
and syntax errors.

4. If there are too many errors to fix manually then you can try to com-
pile the MIB file with lenient error checking by using File>Import
MIB leniently. After you have successfully imported the MIB file, you
can then fix the module by using the MIB Designer object editors.

13 Trouble-Shooting

71

72

13 Trouble-Shooting

You can check a MIB module for syntax errors at any time by using
View>Check.

5. If the steps above cannot solve your problem, ask for support at sup-
port@mibdesigner.com.

How To Increase the Maximum Memory Size

For most situations the default maximum memory size of the Java 2SE
Runtime Environment is absolutely sufficient. When you need to
compile several thousands of MIB files at once or if you are working
with very large MIB modules, then increasing the maximum memory
size over 64 MB (128 MB with WebStart) can be necessary.

To specify a non-default maximum memory size of 256MB for MIB
Designer, start it from the command line within the MIB Designer instal-
lation directory with:

java -Xmx256m mibdesigner.jar

MIB Objects Seem To Be Read-Only

SMI objects represented by nodes with underlined node name are read-
only - to be precise - most attributes of those nodes are read-only. Such ob-
jects are released objects. Released objects are protected by MIB Designer
against incompatible changes.

If you are sure that a MIB module has not been released or used yet, then
you might unlock the whole module by choosing Extra>Unlock MIB. For
more details see section “Revision Control” on page 53.

SMI Compiler Reports Error 1000 Without Error Description

If error 1000 is reported without an error description, then an internal er-
ror occured. This might be a bug, but it can also be caused because MIB
Designer ran out of memory. If you are unsure whether there is enough
memory available, you can open the About dialog from Help>About to
check the free memory.

If lack of memory can be ruled out as problem cause, then please contact
support by writing an email to support@mibdesigner.com. Please specify
the MIB Designer version and the operating system you are using.

Enable Console Ouput of MIB Designer With Java WebStart

If MIB Designer hangs or otherwise shows malfunction, detailed infomra-
tion about the error can be found on the console of the MIB Designer ap-
plication. When running MIB Designer from with Java WebStart you
activate console output by running

javaws -viewer

and then selecting the Advanced tab of the Java Control Panel. Check
the option Show Console in the Java-Console section.

Then run MIB Designer again and the console output will be shown in
a window.

13 Trouble-Shooting

73

74

14 Error Messages

14 Error Messages

The following table list the error messages of the MIB compiler. Most error
texts contain placeholders, like <X>, <Y>, etc., which are replaced by the
MIB compiler with values describing the context of the error. Please see the
description text for an explanation of those placeholders.

Error Number

Error Text
Description ¢ Hints for Error Recovery

0000

File open error: <X>.

The file <X> could not be read, please check access rights.

0010

The length of identitier <X> exceeds 64 characters (RFC2578 83.1, §7.1.1, §7.1.4).

1t is recommended to use only identifiers with a length of less than 32 characters for interoperability
issues. ldentifiers that exceed 64 characters in length must be avoided.

0050

Encountered lexical error at ...

The encountered character is not allowed in a SMI MIB module.

1000

Syntax error: Encountered “zokenI” at row 7, column ¢, expected one of the following: ...

The parser encountered a string it did nor expect. Please look at the list of expected tokens carefully
in order to determine the trouble cause. If the parser complains abour a SMIv2 keyword like MAX-
ACCESS, please check whether the first statement after the IMPORTS clause is a MODULE-
IDENTITY definition. This is a requirement for a SMIv2 MIB module (RFC2578 $3).

1001

The DISPLAY-HINT clause value “fokenI” at row r, column ¢ is invalid (RFC2579 §3.1)

The DISPLAY-HINT clause does not correspond to any of the allowed formats for INTEGER or
OCTET STRING base types.

1002

The UTC time value “#okenI” at row 7, column ¢ does not match the mandatory format YYM-

MDDhhmmZ or YYYYMMDDhhmmZ (RFC2578 §2)

The UTC time value does not correspond to the formar YYMMDDhbhmmZ or YYYYMMDD}-
hmmZ where

YY - last two digits of year (only years between 1900-1999)

YYvYy - last four digits of the year (any year)

MM - month (01 through 12)

DD - day of month (01 through 31)

hh - hours (00 through 23)

mm - minutes (00 through 59)

Z - denotes GMT (the ASCII character Z)

1050

T'he clause <X> is not allowed within this context.

There are several clauses in SMI that are optional, but if specified those clauses need to be consistent
with other clauses in the object definition. Examples for such clauses are the ACCESS, MIN-
ACCESS, and SYNTAX clauses in MODULE-COMPLIANCE constructs, which must not be
present for variations of NOTIFICATION-TYPE:.

14 Error Messages

I'T00

Imported MIB module <X> unknown.

The MIB module <X> could not be found in the MIB repository and neither in the MIB modules
being compiled. Check whether to MIB module name is not misspelled (this is often the case for
older RFC MIBs).

1101

Imported MIB module <X> contains a circular import.

The MIB module <X> imports from a module that either imports itself from <X> or any other
module in the import chain imports from a preceding module.

1102

MIB module <X> is imported more than once.

The ASN.1 rules abour IMPORTS that SMI is based on require that an import source is defined

not more than once in a module.

1110

<X> imported from MIB module <Y> must be imported from <Z> instead.

For historical reasons, SMI requires to import the MACRO definitions SMI is based on from some
ASN. 1 modules. For SMIv1 and SMIv2 it is defined which MACRO (construct) is imported from
which ASN. 1 module. Since those ASN. 1 modules (e.g. SNMPv2-SMI) are not SMI themselves,
the MACRO definitions have to be removed in order to be able to compile them.

ITI1

Missing import statement for <X> (RFC2578 §3.2).

To reference an external object, the IMPORTS statement must be used to identify both the descrip-
tor and the module in which the descriptor is defined, where the module is identified by its ASN. 1

module name.

1112

Imported object <X> is not defined in MIB module <Y>.

Use the Edit>Search MIB Repository to search for the MIB module that defines <X>.

1113

Object <X> is imported twice from MIB module <Y>.

An object definition shall only be imported once from a MIB module.

1114

<X> cannot be imported (RFC2578 §3.2).

Notification and trap type definitions as well as SEQUENCE constructs cannot be imported by
other MIB modules.

1150

Wrong module order within file.

The MIB file that failed to compile contains more than one MIB module and the order of those
MIB modules does not correspond with their import dependencies.

1200

The SYNTAX clause of the columnar OBJECT-TYPE definition <X> does not match with
the SYNTAX clause of the corresponding SEQUENCE definition.

The object <X>'s syntax differs in a SEQUENCE definition from its OBJECT-TYPE definition.

1202

The OBJECT-TYPE <X> has inconsistent maximum access (RFC2578 §7.3).

An object <X> has a MAX-ACCESS or ACCESS clause that does not match its context (RFC2578
$7.3). For example, a columnar object must not have a MAX-ACCESS value of “read-write” if any
other columnar object in the table has a MAX-ACCESS value of “read-create”,

75

76

14 Error Messages

1210

I'he conditionally GROUY clause <X> must be absent trom the corresponding MANDA-
TORY-GROUPS clause (RFC2580 §5.4.2).

A conditionally group cannot be mandatory at the same time!

1211

OBJECT variation <X> must be included in a GROUP or MANDATORY-GROUP:s reter-
ence (RFC2580 §5.4.2).

The object reference <X> must be part of any object group specified as conditionally or mandatory
Jor this compliance module.

1212

Only "not-implemented’ is applicable for the ACCESS clause of the notification type variation
<X> (RFC2580 §6.5.2.3).

If the notification has to be implemented, then the ACCESS clause should be removed.

1220

The CREATION-REQUIRES clause of variation <X> must only be present for conceptual
row definitions (RFC2580 §6.5.2.4).

The CREATION-REQUIRES clause must not be present unless the object named in the correspon-
dent VARIATION clause is a conceptual row, i.e., has a syntax which resolves to a SEQUENCE
containing columnar objects.

1221

Only columnar object type definitions with access read-create may be present in the CRE-

ATION REQUIRES clause of variation <X> (RFC2580 §6.5.2.4).

Other objects and columns cannot be created and thus they cannot participate in a row creation.

1500

Unresolved syntax reference <X>

The syntax (data type) <X> is not defined in the parsed MIB module and it is not imported from
another MIB module. Use the Edit>Search MIB Repository function to search the MIB repository
Jfor object name <X> and add the corresponding IMPORT FROM clause for <X>.

1501

Unresolved object reference <X>

The object name <X> is not defined in the parsed MIB module and it is not imported from another
MIB module. Use the Edit>Search MIB Repository function to search the MIB repository for
object name <X> and add the corresponding IMPORT FROM clause for <X>.

1502

The object <X> must be defined or imported (RFC2578 §3.2).

The object <X> is not defined in the parsed MIB module and it is not imported from another MIB
module. Use the Edit>Search MIB Repository function to search the MIB repository for object
name <X> and add the corresponding IMPORT FROM clause for <X>.

1600

The object definition <X> references a <Y> definition, expected a reference to an OBJECT-
TYPE conceptual row definition instead.

The AUGMENTS clause, for example, requires that the referenced object definition is a conceptual
table definition, i.e., has a syntax which resolves to a SEQUENCE containing columnar objects.

1601

The GROUP clause <X> references a <Y> definition, expected a reference to an OBJECT-
GROUP or NOTIFICATION-GROUP instead (RFC2580 §5.4.2).

The GROUP clause requires a reference to an object group definition.

14 Error Messages

1602

I'he object reterence <X> points to a <Y> definition, expected a reterence to an OBJECT-

TYPE or NOTIFICATION-TYPE definition instead.

The VARIATION clause, for example, requires a reference to an OBJECT-TYPE or a NOTIFICA-
TION-TYPE definition.

1700

Object reference with wrong type: <X>, expected type was <Y>, but found <Z> instead.

The reference to object <X> must be of type <Y> but it is of type <Z>.

1800

The SEQUENCE clause of the table entry definition <X> does not match the order or num-
ber of objects registered for that table at entry <Y>.

The column references in the SEQUENCE definition of a table must be lexicographically ordered
by their object-identifiers. The object name Y is the name of the first object reference in the
SEQUENCE definition that does not match the order of columnar objects of that table.

1801

I'he SEQUENCE detinition for table entry <X> does not match with the number of child
objects of that node.

All objects registered below a table entry node must be included in the SEQUENCE definition of
that table entry.

1810

The OBJECT-TYPE <X> has an invalid index definition (RFC2578 §7.7).

The OBJECT-TYPE <X> has an invalid INDEX clause, i.c., an empty clause.

1811

The OBJECT-TYPE <X> has an invalid index definition because <Y> may be negative
(RFC2578 §7.7).

Index values have to be encoded as OID suffixes on the wire. Since OID sub-identifiers are 32-bit
unsigned integer values, negative values cannot be encoded over the wire. See RFC2578 §7.7 for
more details.

1812

The OBJECT-TYPE <X> has an invalid index definition (RFC2578 §7.7) because the mini-
mum total index length exceeds 128 which is the maximum SNMP OID length.

Instances of this OBJECT-TYPE <X> can never be accessed through the SNMP protocol, because
the identifying OID is longer than 128 sub-identifiers and thus cannor be represented in SNMUP.

1813

The OBJECT-TYPE <X> has an invalid index definition (RFC2578 §7.7) because the sub-
index with the IMPLIED length can have a zero length.

Implied variable length sub-index values cannot be represented.

1850

The OBJECT-TYPE <X> has invalid index definition, because <Y> is not a columnar object
(RFC2578 §7.7).

The OBJECT-TYPE <X> has an invalid INDEX clause, because <Y> does not refer to a columnar
OBJECT-TYPE definition. An OBJECT-TYPE is columnar object, if it is part of a table defini-
tion. See RFC2578 §7.7 for more details.

1851

OBJECT-TYPE definition <X> is a scalar and therefore it must not have an INDEX clause
(RFC2578 §7.7).

Scalar objects have a fixed instance identifier (“index”) of ‘0, thus an INDEX clause must not be
specified.

77

78

14 Error Messages

2000

Duplicate object registration of <X> after <Y> tor the object [D <Z> (RFCZ5/8 §3.6).

Once an object identifier has been registered it must not be reregistered. An object registration is any

object definition other than OBJECT-IDENTIFIER.

2010

Illegal object registration of <X> under <Y> for the object ID <Z>.

For example, it is not legal to register objects in the sub-tree of an OBJECT-TYPE registration.

3000

The default value of OBJECT-TYPE <X> is out of range (RFC2578 §7.9).

The values specified in a DEFVAL clause have to be valid values for the corresponding data type

5ynmx.

3001

TI'he size of the default value of OBJECT-TYPE <X> s out of range (RFC2578 §7.9).

The length of the specified octet string exceeds the SIZE constraints defined for the corresponding
data type syntax.

3002

T'he format of the default value of OBJECT-TYPE <X> does not match its syntax (RFC2578
§7.9).

The value <X> is not properly defined for the corresponding syntax.

3003

A DEFVAL clause is not allowed for OBJECT-TYPE <X> which has a base syntax of Counter
(Counter32 or Counter64) (RFC2578 §7.9).

4000

T'he syntax definition of the object <X> is not a valid refinement of its base syntax (RFC2578

§9).

A refinement must not extend the range of valid values for a dara rype.

4010

T'he range restriction is invalid because ...

The lower bound (first value) of range restriction must be less or equal than the corresponding upper
bound (second value). In addition, bounds for unsigned values cannot be negative.

4100

The TEXTUAL-CONVENTION definition <X> must not have a DISPLAY-HINT clause
because its SYNTAX is OBJECT IDENTIFIER, IpAddress, Counter32, Counter64, or any
enumerated syntax (BITS or INTEGER) (RFC2579 §3.1)

Only textual conventions for INTEGER and OCTET STRING base types may have a DISPLAY-
HINT clause.

4101

The DISPLAY-HINTT clause value “zokenl” of the TEXTUAL-CONVENTION detinition
<X> is not compatible with the used SYNTAX (RFC2579 §3.1)

The integer DISPLAY-HINT format must be used with the INTEGER base type only whereas the
string DISPLAY-HINT format must be used with OCTET STRING base type only.

5000

T'he object definition <X> must be included in an OBJECT-GROUP or a NOTIFICATION-
GROUP definition respectively (RFC2580 §3.1 and §4.1).

This requirement ensures that compliance statements for a MIB module can be written.

5100

Object group <X> must not reference OBJECT-TYPE <Y> which has a MAX-ACCESS clause
of not-accessible (RFC2580 §3.1).

Only accessible objects and notifications may be included in object groups.

14 Error Messages

Table 6: MIB compiler error
messages and descriptions.

79

80

15 Regular Expression Syntax

15 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it. Thus,
a regular expression can be used to check whether an input string is
matched by that expression.

Regular expressions can be concatenated to form new regular expres-
sions; if A and B are both regular expressions, then AB is also a regular ex-
pression. If a string p matches A and another string 4 matches B, the string
pq will match AB. Thus, complex expressions can easily be constructed
from simpler primitive expressions like the ones described here. A brief ex-
planation of the format of regular expressions borrowed from the Python
Library Reference follows.

Regular expressions can contain both special and ordinary characters.
Most ordinary characters, like "A", "a", or "0", are the simplest regular ex-
pressions; they simply match themselves. You can concatenate ordinary
characters, so 1ast matches the string ' 1ast '. (In the rest of this section,
we'll write RE's in this special style, usually without quotes, and
strings to be matched 'in single quotes'.)

Some characters, like "|" or " (", are special. Special characters either
stand for classes of ordinary characters, or affect how the regular expres-
sions around them are interpreted.

The special characters are:

"o (Dot.) In the default mode, this matches any character except a
newline. If the DOTALL flag has been specified, this matches
any character including a newline.

man (Caret.) Matches the start of the string, and in MULTILINE
mode also matches immediately after each newline.
ngn Matches the end of the string, and in MULTILINE mode also

matches before a newline. £oo matches both 'foo' and 'foobar’,

while the regular expression foo$ matches only 'foo'.
Causes the resulting RE to match 0 or more repetitions of the

preceding RE, as many repetitions as are possible. alb* will

IRl

match 'a', 'ab’, or 'a' followed by any number of 'b's.
LAl Causes the resulting RE to match 1 or more repetitions of the

preceding RE. ab+ will match 'a’ followed by any non-zero
number of 'b's; it will not match just 'a'.

mon Causes the resulting RE to match 0 or 1 repetitions of the pre-
ceding RE. ab? will match either 'a" or 'ab’'.

2, 472, The "", "+", and "?" qualifiers are all greedy; they match as

27 much text as possible. Sometimes this behaviour isn't desired; if

the RE <. *> is matched against '<H1>title</H1>"',it
will match the entire string, and not just '<H1>'. Adding "?"
after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched.
Using . * 2 in the previous expression will match only '<H1>".

{m,n}

{m,n}?

"\

"

n

"

15 Regular Expression Syntax

Causes the resulting RE to match from 7 to 7 repetitions of the
preceding RE, attempting to match as many repetitions as possi-
ble. For example, a {3, 5} will match from 3 to 5 "a" charac-
ters. Omitting 7 specifies an infinite upper bound; you can't

omit 7.
Causes the resulting RE to match from m to 7 repetitions of the

preceding RE, attempting to match as few repetitions as possi-
ble. This is the non-greedy version of the previous qualifier. For
example, on the 6-character string 'aaaaaa', a{3, 5} will
match 5 "a" characters, while a { 3, 5} ? will only match 3

characters.
Either escapes special characters (permitting you to match char-

acters like "*", "?", and so forth), or signals a special sequence;

special sequences are discussed below.

Used to indicate a set of characters. Characters can be listed
individually, or a range of characters can be indicated by giving
two characters and separating them by a "~". Special characters
are not active inside sets. For example, [akm$] will match any
of the characters "a", "k", "m", or "$"; [a-z] will match any
lowercase letter, and [a-zA~-Z0-9] matches any letter or
digit. Character classes such as \w or \'S (defined below) are
also acceptable inside a range. If you want to include a "]" or a
"-" inside a set, precede it with a backslash, or place it as the
first character. The pattern [1] will match ' 1", for example.
You can match the characters not within a range by complement-
ing the set. This is indicated by including a "~" as the first char-
acter of the set; """ elsewhere will simply match the "*"
character. For example, [5] will match any character except
"5".

A | B, where A and B can be arbitrary REs, creates a regular
expression that will match either A or B. This can be used inside
groups (see below) as well. To match a literal " | ", use \ |, or

enclose it inside a character class, asin [|].
Matches whatever regular expression is inside the parentheses,

and indicates the start and end of a group; the contents of a
group can be retrieved after a match has been performed (for
example in a substitution expression), and can be matched later
in the string with the \ number special sequence, described
below. To match the literals " (" or " ") ", use \ (or \), or

enclose them inside a character class: [(] [)].
This is an extension notation (a "?" following a " (" is not

meaningful otherwise). The first character after the "?" deter-
mines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group;

(?P<name>. . .) is the only exception to this rule. Following
are the currently supported extensions.

81

15 Regular Expression Syntax

(?imsx)

(One or more letters from the set "1", "L", "m", "s", "x".) The
group matches the empty string; the letters set the correspond-
ing flags for the entire regular expression:

i - Do case-insensitive pattern matching,.

m - Treat string as multiple lines. That is, change "A" and "$"
from matching the start or end of the string to matching the
start or end of any line anywhere within the string.

s - Treat string as single line. That is, change "." to match any
character whatsoever, even a newline, which normally it would
not match.

The /s and /m modifiers both override the $* setting. That is, no
matter what $* contains, /s without /m will force "A" to match
only at the beginning of the string and "$" to match only at the
end (or just before a newline at the end) of the string. Together,
as /ms, they let the "." match any character whatsoever, while yet
allowing "A" and "$" to match, respectively, just after and just
before newlines within the string.

Extend your pattern's legibility by permitting whitespace and

comments.
A non-grouping version of regular parentheses. Matches what-

ever regular expression is inside the parentheses, but the sub-
string matched by the group cannot be retrieved after

performing a match or referenced later in the pattern.
A comment; the contents of the parentheses are simply ignored.
Matches if . . . matches next, but doesn't consume any of the

string. This is called a lookahead assertion. For example, Isaac
(?=Asimov) will match "Isaac ' onlyifit's followed by
'Asimov’'.

Matches if . . . does not match next. This is a negative looka-
head assertion. For example, Isaac (?!Asimov) will
match 'Isaac ' only ifit's not followed by 'Asimov'.

The special sequences consist of "\" and a character from the list below. If
the ordinary character is not on the list, then the resulting RE will match
the second character. For example, \'$ matches the character "$".

\number

\A

Matches the contents of the group of the same number. Groups
are numbered starting from 1. For example, (.+) \1 matches
'"the the'or '55 55',butnot "the end' (note the
space after the group). This special sequence can only be used to
match one of the first 99 groups. If the first digit of number is 0,
or number is 3 octal digits long, it will not be interpreted as a
group match, but as the character with octal value number. Inside
the "[" and "]" of a character class, all numeric escapes are

treated as characters.
Matches only at the start of the string.

\b

\B

\d
\D

\s
\S
\w
\W

\7Z
AN\

Matches the empty string, but only at the beginning or end of a
word. A word is defined as a sequence of alphanumeric charac-
ters, so the end of a word is indicated by whitespace or a non-
alphanumeric character. Inside a character range, \b represents

the backspace character.

Matches the empty string, but only when it is 7oz at the begin-
ning or end of a word.

Matches any decimal digit; this is equivalent to the set [0-9].
Matches any non-digit character; this is equivalent to the set
[~0-9].

Matches any whitespace character; this is equivalent to the set [
\tAN\r\f\v].

Matches any non-whitespace character; this is equivalent to the
set [~ \t\n\r\f\v].

Matches any alphanumeric character; this is equivalent to the set
[a-zA-70-9].

Matches any non-alphanumeric character; this is equivalent to
the set [*a-zA-7Z0-9].

Matches only at the end of the string.

Matches a literal backslash.

15 Regular Expression Syntax

83

	Table Of Contents
	1 System Requirements
	2 Installation
	2.1 Using Java WebStart
	2.2 Other Platforms
	2.3 Starting MIB Designer
	2.4 Upgrade
	2.5 Uninstall

	3 What Is MIB Designer?
	4 Setup
	4.1 Creating a MIB Repository
	4.2 Compiling MIB Files
	4.3 Deleting MIB Modules

	5 Using MIB Designer
	5.1 Creating a New MIB
	5.2 Editing a MIB
	5.2.1 Import
	5.2.2 Add
	5.2.3 Copy
	5.2.4 Cut
	5.2.5 Paste
	5.2.6 Edit
	5.2.7 ASN.1 Comments
	5.2.8 Moving Objects
	5.2.9 Renumbering Objects
	5.2.10 MIB Object Editing Dialogs
	5.2.11 Object Identifier
	5.2.12 Object Identity
	5.2.13 Module Identity
	5.2.14 Textual-Convention
	5.2.15 Object Type
	5.2.16 Table
	5.2.17 Notification
	5.2.18 Group
	5.2.19 Module Compliance
	5.2.20 Agent Capabilities
	5.2.21 MIB-Tree Colors and Icons

	5.3 Built-in Spell Checking
	5.4 Finding MIB Objects
	5.4.1 Search MIB Repository for Importing Objects
	5.4.2 Search MIB Repository for References
	5.4.3 Navigate Between MIB Objects
	5.4.4 Refactor Object Names and Descriptions

	5.5 MIB Validation
	5.6 Saving and Exporting a MIB
	5.6.1 Exporting MIBs to XML, HTML, XSD, PDF, and Text

	5.7 Printing a MIB module
	5.8 MIB File Editor
	5.8.1 Checking a MIB File
	5.8.2 Saving and Compiling a MIB File
	5.8.3 Auto Syntax Completion
	5.8.4 Printing with Syntax Highlighting
	5.8.5 Search and Replace by Regular Expressions

	6 MIB Design
	7 Revision Control
	8 MIB Comparison
	9 SMI Conversion
	9.1 SMIv1 to SMIv2
	9.1.1 Fully Automated
	9.1.2 Manual Intervention or Review Needed
	9.1.3 Not Supported

	9.2 SMIv2 to SMIv1
	9.2.1 Fully Automated
	9.2.2 Not Supported

	10 Correction
	10.1 Index Range Correction
	10.2 INTEGER Usage Correction
	10.3 Case Correction
	10.4 SMI Macro Import Correction

	11 Tools
	11.1 Tool Configuration
	11.2 Tool Execution

	12 Preferences
	12.1 General
	12.1.1 MIB Compiler
	12.1.2 MIB Generation
	12.1.3 Other Options

	12.2 Repository
	12.3 View
	12.3.1 Look & Feel
	12.3.2 Other View Settings

	12.4 Spell Checking
	12.5 Defaults
	12.6 Syntax Highlighting
	12.7 Printing

	13 Trouble-Shooting
	14 Error Messages
	15 Regular Expression Syntax

