
AgenPro 5.1

A Java SE Application
for SNMP Code Generation and Agent Simulation

Copyright © 2001-2023, Frank Fock. All rights reserved.

i

1 AgenPro Manual Overview .. 1
2 System Requirements .. 2
3 Setup ... 3
3.1 Installation .. 3
3.2 Using Native Installer .. 3
3.3 Other Platforms .. 3
3.4 Starting AgenPro ... 4
3.5 Updates and Upgrades ... 4
3.6 Uninstall ... 4
3.7 Setup ... 5
3.7.1 Install Templates, Example Projects, and MIBs ... 5
3.8 Upgrade .. 5
3.8.1 Upgrade Templates to AgenPro v4.0 ... 5
3.8.2 Upgrade Templates to AgenPro v4.2 ... 6
4 Preferences .. 7
4.1 Persistence ... 7
4.2 View .. 7
4.3 General ... 7
4.4 Internet Proxy ... 7
5 MIB Repository ... 9
6 MIBs ... 10
6.1 Getting MIB Files ... 10
6.2 Compiling MIBs ... 10
6.2.1 Compiler Log .. 11
6.3 Loading MIB Modules .. 13
6.4 Deleting MIB Modules ... 13
7 Projects .. 15
7.1 Accessing the Project Wizard ... 15
7.2 Managing Projects ... 15
7.3 Properties .. 16
7.3.1 Properties Tab ... 18
7.3.2 AGENT++ Code Generation Properties .. 20
7.3.3 SNMP4J-Agent Code Generation Properties ... 22
7.3.4 The Code Generated for SNMP4J-Agent .. 27
7.4 Project Wizard .. 27
7.4.1 Job Configuration ... 28
7.4.2 Job Properties .. 31
7.4.3 User Code ID Mappings ... 31
7.4.4 AGENT-CAPABILITIES Selection .. 31

ii

7.4.5 MIB Module Selection .. 32
8 Code Generation .. 33
8.1 Code Generation Benefits with AgenPro & AGENT++ 33
8.2 Code Generation Benefits with AgenPro & SNMP4J-Agent 34
8.3 Code Generation Prerequisites .. 34
8.4 Running Code Generation Jobs ... 37
8.5 How Jobs are Processed ... 38
8.6 Customizing Code Generation .. 39
8.6.1 Code Protection .. 44
8.7 Code Preview and Mapping .. 46
8.7.1 Map Protected Code .. 47
8.7.2 Write or Export Preview Code ... 48
8.8 AgenPro Maven Plugin .. 49
8.8.1 Upgrade From AgenPro Maven Plugin Version 3 49
8.8.2 Maven Plugin Installation .. 49
8.8.3 Using the AgenPro Maven Plugin .. 50
9 Simulation Agent ... 53
9.1 Simulation Agent Configuration ... 54
9.1.1 Simulation Properties .. 57
9.1.2 Agent Data .. 60
9.1.3 Simulation Data .. 61
9.1.4 Simulation Agent Configuration with SNMP .. 65
9.2 Running a Simulation Agent ... 65
9.3 Sending a Simulated Notification .. 67
10 MIB File Editor ... 69
10.1 Save, Compile, and Load a MIB File at Once .. 69
10.2 Search and Replace Function ... 69
10.3 Regular Expression Syntax ... 70
11 Logging .. 75
11.1 Configuration .. 75
12 Tools .. 76
12.1 Identifying Duplicate OIDs ... 76
12.2 Extract SMI Modules from RFC Documents .. 76
12.3 Code Formatters .. 76
12.4 Other Tools (not from the Tools Menu) ... 78
12.4.1 Searching the MIB Tree .. 78
12.4.2 Exporting MIB Modules ... 78
13 Trouble Shooting ... 80
14 MIB Compiler Error Messages .. 81

AGENPRO USER GUIDE
AgenPro Manual Overview 1

1 AgenPro Manual Overview

The AgenPro manual is organized into the following main topics:

 Code Generation Benefits

What are the benefits when generating code with AgenPro?

 Setup

How to install AgenPro.

 Managing MIBs

How to compile MIBs, store them in a MIB repository, and loading
MIBs into the MIB tree.

 Projects

How to open/create, edit, and save code generation projects.

 Code Generation

How to generate program code (stubs) for AGENT++ (C++) and
SNMP4J-Agent (Java) agent development.
How to create code generation templates for third party SNMP agent
APIs and how to modify existing templates for AGENT++ and
SNMP4J-Agent to meet special needs.

 Simulation Agent

How to run a SNMP agent based on your project settings instantly
from the AgenPro graphical user interface.

 Tools

How to search the MIB tree, how to find duplicate OIDs, and how to
export MIB modules to HTML and plain text files.

AGENPRO USER GUIDE
System Requirements2

2 System Requirements

Minimum system requirements for AgenPro are:

 Java Runtime Environment (JRE) 11 or later installed to be able to
use all features:

 Java 8 is the minimum required version for

AgenPro command line usage (without built-in code formatting)

AgenPro Maven Plugin

 512 MB RAM (AgenPro will use up to 256 MB RAM by default)

 ~ 200 MB free hard disk space (JRE included)

 Color display with at least 1280x1024 pixels (GUI only)

 Mouse or comparable input device (GUI only)

The AgenPro Maven plugin
depends on AgenPro command
line interface internally and thus,
when using a JRE less than 11,
built-in Java code formatting will
not be supported/done when
running code generation jobs.

For the AgenPro Maven-Plugin:

 Maven 3.1.1 or later

 Java Runtime Environment (JRE) 8 or later installed.

http://java.sun.com/javase/downloads/

AGENPRO USER GUIDE
Setup 3

3 Setup

Please read the section “System Requirements” on page 2 for prerequisites
needed to install and run AgenPro. Then follow the below steps to install
and setup AgenPro.

3.1 Installation
There several AgenPro installation packages available for download from
https://agentpp.com/download.html.

In general, there are the following types of installation packages
available, however only the JAR is available for all supported target
platforms:

 Installation package with platform integration (start menu, application
icon) including the OpenJDK Java Runtime.

 JAR file - Help display with system browser views help online or from
the installed accompanied files.

See “System Requirements” on
page 2 for system requirements of
the supported platforms.

The agp-<version>.jar file can be used on all platforms, including
Windows, but without start menu integration.

3.2 Using Native Installer
The native installation packages provide best operating system integration,
for example start menu entry and an application icon on the desktop/
launch menu.

To start the installation simply download and run the native
installation file after download and follow the instructions.

Once you have started AgenPro and entered your license information,
choose File>Install... to install AgenPro MIB files and repository as well as
other accompanied files on your system.

3.3 Other Platforms
Download the agp-<version>.jar file in a folder of your choice. Start
the AgenPro application by

 double clicking it from your system’s file explorer, or

 running:

AGENPRO USER GUIDE
Starting AgenPro4

java -jar agp-<version>.jar

Once you have started AgenPro and entered your license information,
choose File>Install... to install AgenPro MIB files and repository as well as
other accompanied files on your system.

3.4 Starting AgenPro
If you have used an OS installer to install AgenPro then you can start it
from your systems application start menu.

Alternatively double click the downloaded agp-<version>.jar file
or run java -jar agp-<version>.jar from the command line.

When AgenPro is started for the first time, you will be prompted for your
license information.

Please enter your license including
blanks! The license key, which is
case sensitive, must be entered
without any blanks!

If you are using a restricted license you can upgrade it later without
reinstalling AgenPro by choosing Help>License… from the main menu.

A MIB file can be specified as command line parameter which is then
compiled and loaded on startup:

java -jar agp-<version>.jar <mibfile>

3.5 Updates and Upgrades
AgenPro will contact a service on
https://updates.snmp.app to
check if new updates are available
for the installed version and
license. When you confirm the
update, the new version will be
downloaded from https://
agentpp.com from the same
location you would use for a
manual download.

You can use Help>Check for Updates to check Online (see also
“Internet Proxy” on page 7) if there are free updates or upgrades available
for your AgenPro installation from https://agentpp.com.

If a new version is available you can choose to download it and replace
your current version in-place with the update and restart the application
immediately thereafter.

After the restart and if a newer version of the accompanied file set is
available with the new version, AgenPro will ask you to install them over
the current installation location. If you confirm the installation, AgenPro
will overwrite existing files with their newer version unless you have
activated the setting “Warn before overwriting files”. See “MIB
Repository” on page 9.

3.6 Uninstall
Note: The files installed by the
Install menu item must be
uninstalled manually, if they are
no longer needed.

For an installation with one of the native installer packages, please use the
platform specific uninstall mechanisms to remove the software itself.

Otherwise it is sufficient to remove the agp-<version>.jar file.
In any of both cases, you may manually remove the accompanied files

installed by AgenPro during initial startup at a location you had then
chosen.

AGENPRO USER GUIDE
Setup 5

AgenPro holds its configuration data in the AgenPro4.cf file in your
home directory. To completely uninstall AgenPro, this file has to be
removed manually. By removing it, you will have to reenter your license
information - as well as other configurations - when you reinstall AgenPro.

3.7 Setup
Once you have started AgenPro and entered your license information,
choose File>Install... to install AgenPro MIB files and repository as well as
other accompanied files on your system.
At first application start, you will be automatically asked to specify an
empty installation directory for AgenPro accompanied files.

Caution:
When updating accompanied
files, modifications of those files
may get lost if you choose to
overwrite the existing files!

Every time AgenPro is updated, regardless whether through Web Start or
manually, and the structure or version of the accompanied file set has
changed, you will be asked to install/update those files again. You have
then the choice to install the files to a new location or update the existing
files.
AgenPro will compare the hash code of the installed files with those
provided by the new version and ask for each changed file if you want to
overwrite the existing one.

3.7.1 Install Templates, Example Projects, and MIBs

Once you have started AgenPro and entered your license information,
choose File>Install... to install AgenPro MIB files and repository as well as
other accompanied files on your system, if you have not yet done it during
setup.

3.8 Upgrade
When installed through Java WebStart, AgenPro will be automatically
updated through Web Start on application startup, if a newer version is
available on the AgenPro web site.
If a newer version of the accompanied file set is available with the new
version, AgenPro will ask you to install them over the current installation
location. If you confirm the installation, AgenPro will overwrite existing
files with their newer version.
New major version will not be upgraded automatically through WebStart
and need to be licensed separately.

3.8.1 Upgrade Templates to AgenPro v4.0

AgenPro 4.0 and later uses Velocity 1.7. To upgrade customized templates
written for earlier AgenPro versions, replace #define by \#define
(thus insert a backspace to escape the hash sign) in all templates.

AGENPRO USER GUIDE
Upgrade6

3.8.2 Upgrade Templates to AgenPro v4.2

AgenPro 4.2 and later use Velocity 2.0 instead 1.7. To upgrade customized
code generation templates from version 4.0.x or 4.1.x replace:

 $stringUtils.sub(with $agenStringUtils.substitute(

 $stringUtils. with $agenStringUtils.

 $velocityCount with $foreach.count

AGENPRO USER GUIDE
Preferences 7

4 Preferences

With the preferences dialog accessible from the tool bar () or with
Edit>Preferences from the menu bar, AgenPro‘s settings are configured.

4.1 Persistence
AgenPro stores compiled MIB modules in a MIB repository (see “MIB
Repository” on page 9). Here you can specify where the MIB repository
directory is located. Alternatively, you can also create a new (empty!)
directory for using it as MIB repository.

4.2 View
With the view options, you can split the main window horizontally or
vertically, change the font size for the SMI text panel and whether SMI text
should be syntax highlighted using colors.

4.3 General
Some look & feels may cause
exceptions on certain platforms, if
you encounter such an exception
and you cannot start AgenPro to
change the look & feel to the
default again, then remove the
row with starting with
LookAndFeel from the
AgenPro4.cf file in your
home directory.

In the general settings section, you can select a different look & feel for the
GUI. You can either select one of the look & feel in the combo box, or enter
the class name of a look & feel which then must be part of AgenPro‘s class
loader path.
In addition, you can let AgenPro ask you before it overwrites files.

4.4 Internet Proxy
With AgenPro 5.0 and later, a Internet proxy can be configured for:

 Viewing AgenPro help using with the built-in browser.

 Updating AgenPro and notifying about new (free) updates and
upgrades, see “Updates and Upgrades” on page 4.

By default, AgenPro uses the same settings as your operating system for
Internet proxy. There might be cases where the proxy settings of the
operating system are wrong, incompatible with Java, or otherwise not
accessible.

Then please switch off the check box Use system proxy and provide
the following parameter manually:

 Proxy Host:Port

AGENPRO USER GUIDE
Internet Proxy8

The IP(v4/v6) address or the fully qualified domain name of the Inter-
net proxy host is configured by the first field.
In the second field, the TCP port is configured, which is typically 80,
8080, or 3128.

 No Proxy Hosts

A list of domain names or IP addresses, separated by a pipe symbol (|)
for which no proxy should be used. This should include the at least
localhost|127.*|[::1] to allow AgenPro’s Java Runtime ser-
vices on the local host.

 Proxy server requires password

Check this option if the proxy you want to use requires authentication
using user name and password.

 Proxy User

The user name for the proxy authentication.

 Proxy Password

The password for the proxy authentication.
Note: The password will be stored in clear text in the AgenPro configura-
tion file in your home directory.

AGENPRO USER GUIDE
MIB Repository 9

5 MIB Repository

A MIB repository is a directory that AgenPro exclusively uses to store
compiled MIB modules in an internal format. Before a MIB module can
be loaded into AgenPro's MIB tree and then used by subsequent code
generation operations, it has to be compiled and stored into a MIB
repository.

To Create a MIB Repository:
1. From the file menu choose Set MIB Repository. A File Open menu

dialog box will appear.

2. Navigate through the file system to the directory where you want to
create the MIB Repository.

3. Within that directory, create a new folder by clicking on the Create
New Folder () button. The new folder can be renamed by double-
clicking it.

Note: Do not double-click the new
folder! Otherwise you cannot
select the folder itself.

4. Choose the new (or any other empty folder) by selecting it. Click
Open.

As long as a MIB Repository directory is used by AgenPro, it must not be
altered outside AgenPro. Once a valid MIB Repository has been set, you
may compile MIB files to store them in the repository. AgenPro will store
MIB modules into the repository - please do not copy files manually!

To Select a MIB Repository:
1. From the file menu choose Set MIB Repository. A File Open menu

dialog box will appear.
Tip: Do not double-click the new
folder! Otherwise you cannot
select the folder itself.

2. Navigate through the file system and select the MIB Repository direc-
tory you want to use.

3. Click Open.

The MIB repository will be verified. If any inconsistent or corrupted MIB
modules are found, a dialog will be displayed with instructions to repair
the repository.

AGENPRO USER GUIDE
MIBs10

6 MIBs

SNMP Management Information Base (MIB) specifications are
documents containing definitions of management information so that
network systems can be remotely monitored, configured, and controlled.
AgenPro makes extensive use of all machine readable information within
MIBs. This information is available as so called MIB modules and is used
when running code generation jobs.

To avoid errors in the code generation process that could be hard to find
and problematic to solve, AgenPro does an extensive and precise syntax
and semantic check when compiling MIB files by default.
If there are many errors or MIB modules you cannot fix, you may try to
compile those MIB modules with a lenient syntax check at your own risk.

6.1 Getting MIB Files
MIB specifications developed by the IETF working groups contain prose
descriptions and references to other documents that enclose the actual
MIB module(s). AgenPro compiles SMIv1 (RFC 1155) and SMIv2 (RFC
2578-2580) conforming MIB modules. However, MIB modules have to
be extracted from RFC specifications before they can be compiled.

Whereas extracting MIB modules from RFC documents can be done
manually by removing any prose descriptions, page headers, and footers
from an RFC MIB text document, it is much easier and faster to use the
Tool “Extract SMI Modules from RFC Documents” on page 76.

6.2 Compiling MIBs
Before you can compile MIB modules into AgenPro's internal format, a
MIB repository has to be created where the compiled MIBs are stored.
During the first startup of AgenPro you will be asked to specify a MIB
repository.

Precompiled MIBs
AgenPro comes with a set of precompiled SMIv2 MIBs which are located
in the repository directory of the AgenPro installation. AgenPro uses that
directory as its initial default repository.

AGENPRO USER GUIDE
MIBs 11

To Compile MIBs

1. From the File menu, choose Compile MIBs (or from the main tool
bar). A file open dialog will appear.

2. Choose a MIB file, ZIP file or a directory and click Open. If you
choose a file, then that file will be compiled and all contained MIB
modules (typically one) are stored into the MIB repository

If you choose a directory or a ZIP file, then recursively all contained
files will be parsed. All successfully parsed MIBs will be automatically
sorted by their dependencies and then compiled into the MIB reposi-
tory. Directories may also contain ZIP files.

3. After compilation a message dialog with summary information is
shown.

4. Press Details to open the Compiler Log window (see Figure 1). It lists
status information for each MIB file compiled. The number of errors
in a MIB file is shown in the Errors column. Files with a zero value,
have been successfully compiled and are already loaded into the MIB
repository.
To view the errors detected for that file, click on that row. The SMI
editor on the right hand side will load that file and you can edit it to
fix the syntax errors. The error list below the editor views a detailed
error description. Selecting an entry moves the editor‘s cursor to the
error location. To recompile a file, simply click on one of the Import
buttons of the editor.

5. The MIB modules of the successfully compiled MIB files are automat-
ically stored in the MIB repository. From there, the MIB modules can
be loaded into the MIB Explorer application.
Existing MIB modules will be overwritten (updated). If you do not
want to change any MIB modules that already exist in the current
MIB repository, then use Compile New MIBs from the File menu.

As alternative to step one and two above, you can also drag & drop the files
you want to compile on the MIB tree panel. In that case, only MIB
modules that are newer than its existing version in the MIB repository will
be compiled and loaded.

6.2.1 Compiler Log

The Compiler Log dialog lists the status of all MIB files of a compilation
run. If the compilation of a MIB file failed, the Errors column displays the
a number greater than zero. The compiler log can also be copied as text to
the clipboard.

AGENPRO USER GUIDE
Compiling MIBs12

If you cannot fix the errors of failed MIB files and nevertheless want to use
those files, you can recompile all failed MIBs with a lenient parser mode.
It is likely that lenient compiled MIB modules cause errors during code
generation due to incorrect or missing information.
The file name of the MIB file is displayed in the File column, the number
of errors in the Errors column, and the successfully compiled MIB
modules in the file in the MIB Modules column.

To Correct a MIB File
Click on the row corresponding to the MIB file you want to edit. The MIB
file editor pane will load the file (see section “MIB File Editor” on
page 69). You may then click on an error message below the editor to
directly jump to that error location in the file.
After having fixed the error, the MIB file can be saved and compiled again
by using the Import button .
If the compilation was successful, the Errors column for the file will display
zero errors and the editor‘s status bar will display a green square.

Figure 1: Compiler Log window with compilation errors displayed per MIB module.

AGENPRO USER GUIDE
MIBs 13

6.3 Loading MIB Modules
AgenPro will load MIB modules
configured in a code generation
project even if those modules are
not loaded in the GUI. However,
you will not be able to see and
review property definitions for
MIB objects from those modules.
This may cause unexpected code
generation behavior.

AgenPro needs to load MIB modules from a MIB Repository into its
memory to be able to display and use the contained information for code
generation. For a better overview and performance, it is recommended to
not load unneeded MIBs. Nevertheless, load all MIB modules used in any
of your code generation projects, in order to avoid unexpected results
during code generation.

To Load MIBs:

1. From the File menu, choose Open/Close MIB (or from the main
tool bar). A shuffle dialog will appear. It contains two lists of MIB
modules. The left list shows all MIB modules currently not loaded but
available from the MIB repository. The right list shows the MIB mod-
ules currently loaded. MIB modules displayed in bold text are mem-
bers of the current project. See “Project Wizard” on page 27 for
details.

2. Select any MIB modules you want to load from the left list of available
MIB modules.
You can search for module name sub-strings by simply typing charac-
ters. A search popup will then appear. With the Up and Down keys
you can navigate between the matches.
Click on the Add button to move the selected modules to the right list
of MIBs to be loaded. If a MIB that is moved to the right list depends
on another MIB module that is currently not loaded, then that MIB
(and all MIBs it depends on) will be also moved to the right list too.
This ensures that AgenPro has always a consistent view on MIB data.

3. Select any MIB modules you want to unload (close) from the right list.
Click on the Remove button to move the selected modules to the left
list of available MIBs. Loaded MIB modules that depend on the
removed (unloaded) MIB modules will also be unloaded and thus
moved to the left list.

4. Click on the OK button to execute the changes made. Depending on
the number of MIB modules that need to be loaded, it may take a
while until all modules are loaded and the MIB tree is refreshed.

6.4 Deleting MIB Modules
Deleting a MIB module from a MIB Repository cannot be undone. A MIB
module can only be deleted together with those MIB modules that depend
on it by importing any MIB objects from it.

AGENPRO USER GUIDE
Deleting MIB Modules14

1. From the File menu, choose Delete MIB or from the main tool bar.
A shuffle dialog will appear. It contains two lists of MIB modules. The
left list shows all MIB modules available from the current MIB reposi-
tory. The right list shows the MIB modules that are to be deleted.

2. Select any MIB modules you want to delete from the left list of avail-
able MIB modules. Click on the Add button to move the selected
modules to the right list of MIB modules that should be deleted. Any
MIB modules that depend on a MIB that is moved to the right list will
be moved to the right list too. This ensures that AgenPro has always a
consistent view on MIB data.

3. Select any MIB modules you want to preserve from deletion in the
right list. Click on the Remove button to move the selected modules
to the left list of available MIBs. Any MIB modules that preserved
MIB module depends on will also preserved from deletion.

4. Click on the OK button to execute the changes made.

5. Confirm the deletion of the displayed number of MIB modules by
choosing the Yes option.

AGENPRO USER GUIDE
Projects 15

7 Projects

An AgenPro code generation project contains a set of user defined
properties, a job list, and a list of MIB modules for which program code
should be generated. In addition, code snippet IDs can be mapped to
migrate code associated with a MIB object to another or the same but
renamed MIB object.
AgenPro automatically saves the settings of the current project in its
configuration file located in your home directory.

Using project files has the following advantages:

 More than one agent project or setup can be used at a time.

 Support for command line code generation which can be integrated
into any build process.

 Easy creation of backups, also useful to test agent setup variations.

 Project files may be created and edited externally.

7.1 Accessing the Project Wizard
To edit the job list and code generation MIB module set, use the Project
Wizard:

Note: This will not run your code
generation jobs. To run them,
choose Generate from the Project
menu or from the tool bar.

1. Choose Edit from the Project menu or from the tool bar.

2. Provide the information requested by the Project Wizard steps. See
“Project Wizard” on page 27 for details.

3. Click Finish to save your settings.

7.2 Managing Projects

To create a new project:
Note: This will not run your code
generation jobs. To run them,
choose Generate from the Project
menu or from the tool bar.

1. Choose New from the Project menu.

2. Provide the information requested by the Project Wizard steps.

3. Click Finish to save your settings.

To save a project to a project file:

1. Choose Save As from the Project menu.

AGENPRO USER GUIDE
Properties16

2. Select or enter a file in the opened file chooser.

3. Choose Save to save the project file.

To open a project:
Note: All properties set for the
current project will be discarded
and replaced by the properties set
by the opened project.

1. Choose Open from the Project menu.

2. Select a previously saved project file with the opened file chooser.

3. Choose Open to load it into AgenPro.

7.3 Properties
The standard code generation templates that come with AgenPro are using
several properties to customize the code generation process. Each property
consists of a key and a value.
In many cases, the value part is used only for determining whether a
property is defined or not (comparable to the #define and #ifdef
macros in C++). From a Velocity code generation template you may call

$agenUtils.isDefined(String oid, String key)

to check whether a property is set to yes, true, or an empty string. In
that case, true the method returns true, false otherwise. To get the
assigned value of a property, you may call

$agenUtils.getProperty(String oid, String key)

The AgenPro API JavaDoc is
located in the doc folder of the
installation directory and at http:/
/www.agentpp.com/agenpro/
doc/index.html.

For more information on these methods see the AgenPro API
documentation available from the Help menu.

Properties are associated with MIB nodes. The properties associated with
a MIB object are also inherited by all children of that MIB node. Inherited
properties cannot be removed from a MIB object, but they can be

AGENPRO USER GUIDE
Projects 17

redefined. Nodes with associated properties have an underlined text in the
MIB tree as shown by Figure 2.

The following example illustrates how property assignment works:

The property skip, if defined, instructs AGENT++ and SNMP4J-Agent
code generation templates to not generate any code for those objects that
skip property is defined for. Thus, in the above example, no code will be
generated for objects under the internet node. However, the skip
property is redefined with value false for the interfaces node (by actually
adding it to the interface node again). This redefinition causes AgenPro to
generate code for the objects in that subtree even if their generation had
been suppressed for a parent node.
You can define and use any property you like for your own code generation
templates or for customized versions of the code generation templates
included in AgenPro. For the AGENT++ and SNMP4J-Agent code
generation templates there are some standard properties defined that are
described in “AGENT++ Code Generation Properties” on page 20 and
“SNMP4J-Agent Code Generation Properties” on page 22.
You can put together your own property files with your custom properties
and import those at a MIB node. A sample properties file can be found at:

<installation_directory>/templates/agent++v4_0_x/
agent++4_0_x.props

In order to customize and fine tune the code generation process, AgenPro
provides means to define arbitrary properties for each MIB object in a
project. A property (also called attribute) consists of a key and a value
string. A property can be assigned to any MIB object with an object

Figure 2: AgenPro MIB tree with properties set.

AGENPRO USER GUIDE
Properties18

identifier (OID). Once assigned to a MIB object node, the property is also
assigned to all its children. The following sections provide additional
information about properties and their usage:

Why using properties?

Working with properties (Properties Tab)

 Properties used by AGENT++ code generation templates

 Properties used by SNMP4J-Agent code generation templates

 Reading properties from an existing source file

7.3.1 Properties Tab

With the Properties tab, as its name suggests, properties can be associated
with MIB nodes. The most important element of the tab is a table that lists
the properties defined for the selected MIB node including any inherited
properties. The first column of the table contains the OID (object name)
of the MIB node that originally defined the property. The table is always
sorted by the OID column first. The second column contains the keys/
identifiers of the properties and the third column contains the associated
values.
To toggle the value of simple properties that can be enabled or disabled
only, open the context menu on the row of the property to change and
chose either Enable or Disable.

New in 5.0! Key and Value columns support auto-completion. To toggle between
possible completion, use Up and Down keys.

To view the properties of a MIB node:
1. Select the Properties tab.

2. Select the MIB node whose properties you want to view (edit) in the
MIB tree. If there are any properties associated with a node, then this
node will have a underlined node name.

To add a property to a MIB node:
1. Follow the steps above to view the properties of the MIB node.

2. Choose Add from the Properties panel.

3. A new row will be appended to the table. The key of the new property
is set to <name> and its value is set to <value>.

4. Modify key and value.

AGENPRO USER GUIDE
Projects 19

To remove a property from a MIB node:
1. Follow the steps above to view the properties of the MIB node.

2. Select the property you want to remove in the property table. You can
only select properties that are originally defined for the select MIB
node. Inherited properties will not be affected.

3. Choose Remove from the Properties panel.

To remove all properties from a MIB node:
1. Follow the steps above to view the properties of the MIB node.

2. Choose Remove All from the Properties panel.

To import properties from a file:
1. Follow the steps above to view the properties of the MIB node.

2. Choose Import from the Properties panel.

3. Select a plain text file that follows the Java properties file format. That
is, each line is formatted as <key>=<value>.

4. Choose Open to assign the properties to the current MIB node.

To export properties to a file:
1. Select a MIB node whose properties you want to export.

2. Select the Properties tab.

3. Choose Export from the Properties panel. A file dialog box will be
opened.

4. Enter a file name and choose Save to save the properties.

5. The properties will be saved to a plain text file where one property will
be stored per line as <key>=<value>.

To read properties from an existing source file:
1. Select a MIB node for which you want to read the properties (for

example, the root node).

2. Select the Properties tab.

3. Choose From Source from the Properties panel. A file dialog box
will be opened.

AGENPRO USER GUIDE
Properties20

4. Select an implementation file containing source code generated by
AgenPro.

5. The properties that can be identified from the source file will be added
to the properties of the currently selected node.

7.3.2 AGENT++ Code Generation Properties

AgenPro provides sets of code generation templates to generate program
code for AGENT++ and AgentX++. Please use the most recent version of
the templates that can be used with you version of AGENT++. The version
of the templates indicates the earliest AGENT++ release with which those
templates can be used. Examples:

 If your AGENT++ version is < 3.5.10 then you will have to use the
AGENT++v3.5 templates.

 If your AGENT++ version is 3.5.10 or later then you should use the
AGENT++v.3.5.10 templates.

 For new projects you should use the agent++v4_0_x.prj project
from the projects directory.

The following properties control the code generation for AGENT++. To
enable a property, add it to the properties table of a MIB node and assign
a value true or yes to it. Then the property will be activated for that
MIB node and all its children (unless it has been redefined for a child).

PROPERTY KEY DESCRIPTION

agentX Enables code generation for AgentX++ subagents. This option must not be
defined for AgentX++ master agents.

agentXSharedTables Tables are generated as AgentXSharedTable subclasses that support
index allocation for shared tables. This option must not be used when the
agentX option is not set!

Table 1: Code generation properties for AGENT++ templates.

AGENPRO USER GUIDE
Projects 21

filterOut Works similar to skip, but filters out MIB objects from those to be
generated by matching regular expression(s) against one or more attributes
of all MIB objects of the selected MIB modules.
Example values:

 [access=read-.*;name=.*Status]
Do not generate code for MIB objects with read-only and read-
write MAX-ACCESS clause and if its object name ends with “Sta-
tus”.

 description=(?i).*skip.*
Do not generate code for all MIB objects that have the text “skip” (case-
insensitive matching) in their DESCRIPTION text.

lightTables With this attribute set, read-only columnar objects are not generated as
classes but instantiated directly as instances of MibLeaf. This option
reduces code size.

tableAsComplexEntry With this attribute set, tables are generated as subclasses of
MibComplexEntry rather than as subclass of MibTable. Use this
option for large tables with database or proxy interface.

simulation Generates a simulation agent where all objects may be modified when the
agent is in configuration mode (see also the AGENTPP-SIMULATION-
MIB), regardless whether they are read-only or not. This allows easy
testing of your management software.

withModuleName Generates object names with the MIB module name as prefix. This option
can be used to avoid name clashes when two (or more) MIB modules use
the same name for different objects.

leafSuperClass Specifies the class name for leaf objects' super class. The default is
'MibLeaf'. This property may be defined to derive all leaf objects from a
customized subclass implementation of MibLeaf.

tableSuperClass Specifies the class name for table objects' super class. The default is
'MibTable'. This property may be defined to derive all table objects from a
customized subclass implementation of MibTable.

sharedTableSuperClass Specifies the class name for AgentX shared table objects' super class. The
default is 'AgentXSharedTable'. This property may be defined to derive all
table objects from a customized subclass implementation of
AgentXSharedTable.

PROPERTY KEY DESCRIPTION

Table 1: Code generation properties for AGENT++ templates.

AGENPRO USER GUIDE
Properties22

7.3.3 SNMP4J-Agent Code Generation Properties

The following properties control the code generation for SNMP4J-Agent.
To enable a property, add it to the properties table of a MIB node and
assign a value true or yes to it. Then the property will be activated for
that MIB node and all its children (unless it has been redefined for a child).
Properties with bold key are job properties and only available through
calling $agenUtils.getJobProperty in a template.

complexEntrySuperClass Specifies the class name for complex table objects' super class. The default
is 'MibComplexEntry'. This property may be defined to derive all table
objects of complex type from a customized subclass implementation of
MibComplexEntry. See also “tableAsComplexEntry”.

notificationSuperClass Specifies the class name for notification (trap) objects' super class. The
default is 'NotificationType'. This property may be defined to derive all
table objects from a customized subclass implementation of
NotificationType.

skip Set this property to "yes" to exclude all objects in this subtree from code
generation. This can be overwritten by nodes in the sub-tree.

useStaticConst Set this property to "yes" use "static const" constants instead of
#define for module wide definitions.

PROPERTY KEY DESCRIPTION

Table 1: Code generation properties for AGENT++ templates.

PROPERTY KEY DESCRIPTION

columnSuperClass Specifies the class name for columnar objects' super class. The default is
'MOColumn' for read-only columns and 'MOMutableColumn' for all
other columns. This property may be defined to derive all columnar
objects from a customized subclass implementation of MOColumn or
MOMutableColumn.

constructorAccess If not set then a public constructor is generated. Valid other values
include protected, private, and an empty string.

cleanup If set to yes the ManagedObject.cleanup(..) method is
overwritten for MOScalar subclasses.

commit If set to yes the ManagedObject.commit(..) method is overwritten
for MOScalar subclasses.

Table 2: Code generation properties for SNMP4J-Agent.

AGENPRO USER GUIDE
Projects 23

constantAccess If not set then public OID constants are generated. Valid other values
include protected, private, and an empty string.

contexts A pipe (‚|‘) separated list of contexts that are supported for object
instances in this sub-tree. See also “Simulation Agent” on page 53.

copyrightFooterComment Generates the value 1:1 into the footer of each generated source file.
Supports multi-line values.
Available in SNMP4J-Agent 2.2 or later templates.

copyrightHeaderComment Generates the value 1:1 into the header of each generated source file.
Supports multi-line values.
Available in SNMP4J-Agent 2.2 or later templates.

factoryColumn Read-only columns or columns for which this property is set to yes will
get created through calling the appropriate method of the MOFactory
instance associated with this MIB module.
Set the property value to all, to create all affected columns with a
MOFactory instance. Setting it to none will completely disable
MOFactory usage for affected columns.

factoryScalars Read-only scalars or scalars for which this property is set to yes will get
created through calling the appropriate method of the MOFactory
instance associated with this MIB module.
Set the property value to all, to create all affected scalars with a
MOFactory instance. Setting it to none will completely disable
MOFactory usage for affected scalars.

filterOut Works similar to skip, but filters out MIB objects from those to be
generated by matching regular expression(s) against one or more
attributes of all MIB objects of the selected MIB modules.
Example values:

 [access=read-.*;name=.*Status]
Do not generate code for MIB objects with read-only and read-
write MAX-ACCESS clause and if its object name ends with “Sta-
tus”.

 description=(?i).*skip.*
Do not generate code for all MIB objects that have the text “skip”
(case-insensitive matching) in their DESCRIPTION text.

PROPERTY KEY DESCRIPTION

Table 2: Code generation properties for SNMP4J-Agent.

AGENPRO USER GUIDE
Properties24

get If set to yes the ManagedObject.get(..) method is overwritten for
MOScalar subclasses.

import[.<1-n>] The import property (properties) define additional imports needed for
the module. If more than one import statement is needed the properties
can be enumerated by appending a dot and a one based index value.

next If set to yes the ManagedObject.next(..) method is overwritten
for MOScalar subclasses.

noFactoryColumn Generally suppress generation of columns using MOFactory. Instead
generate column classes which can then be directly overwritten/modified
for instrumentation. Use this option to overwrite the getValue method
for read-only columns.
Alternatively, MOServerLookupListener could be used to update the
cached column (i.e. cell) value externally, without the overhead of a
specific column class.

noIndexValidator Set this property to yes to disable generation of index validator
anonymous classes. These classes can be used to implement custom index
validation, for example, if such a validation cannot fully specified through
SMI.

noRowFactory Set this property to yes to disable generation of a custom
MOTableRowFactory class.
Otherwise an instance of the DefaultMOMutableRow2PCFactory
class will be used to create rows. Using a custom row factory provides
public access (getter) methods for the column values named by the
columnar object names.

noTableGetter Set this property to yes to disable generation of a public table getter
method that makes a table accessible outside the MIB module class.

noValueValidator Set this property to yes to disable generation of value validation
anonymous classes for scalar and columnar objects.
If not set (or false), then value validation classes will be created for any
writable scalar and columnar objects.
Set this property to never to generate a value validation classes for all
scalar and columnar objects including those with read-only access.

moFactory Specifies a non-default MOFactory to be used for the MIB module.

PROPERTY KEY DESCRIPTION

Table 2: Code generation properties for SNMP4J-Agent.

AGENPRO USER GUIDE
Projects 25

object.<trapName> Maps an object instance to a trap (name). Because notification and trap
type definitions specify which object types are included in a trap, but do
not define which instances of that object types, this mapping is needed to
be able to generate a (simulated) notification. The instance is identified
by its row index value as defined by the corresponding rows property:

object.ifDownIf1 1

where ifDownIf is a trap name as defined by a traps property and 1 is
the ifIndex index value. See “Simulation Properties” on page 57 for a
complete example.
If the value of this property is „?“ or is not specified at all, AgenPro will
ask for its value, when this trap is simulated.

package Set this property to the package name of the generated code. Generated
files will be placed in directory matching the package name under the
output directory provided in the job configuration.

Available in SNMP4J-Agent 2.2 or later templates.

reference The value of this property is used when the useReference property is
set to yes and there is no REFERENCE clause for the object type being
generated.

rows The rows property defines the rows that are create for the table(s) in the
node‘s sub-tree. The value of the rows property is a pipe symbol (‚|‘)
separated list of row indexes. A row index value consists of sub-index
values which are separated by semicolons (‚;‘). A sub-index value itself
can be provided either as dotted numeric string (1.3.6.1.4.1) or as
string representation of the sub-index value (snmpAdminString).
To specify three indexes for the vacmAccessTable, the value of its
rows property could be:
v3group;;3;authPriv|v1;v1;1;noAuthNoPriv|v2c;;2;1

scalarSuperClass Specifies the class name for scalar objects' super class. The default is
'MOScalar'. This property may be defined to derive all scalar objects
from a customized subclass implementation of MOScalar.

skip Set this property to yes to exclude all objects in this subtree from the
code generation.

staticMOFactory Set this property to yes to use a static MOFactory. Default is no.

PROPERTY KEY DESCRIPTION

Table 2: Code generation properties for SNMP4J-Agent.

AGENPRO USER GUIDE
Properties26

trapDescr.<trapName> The trapDescr property defines a textual description for a particular
notification template. This description is displayed by AgenPro when
asking for missing notification payload references while firing this trap. In
addition, the description is used to extend the JavaDoc of this notification
generation method.

traps The traps property defines the names of the notification templates used
within the simulation agent and for code generation for a particular
NOTIFICATION-TYPE. The names are separated by a pipe symbol
(„|“). To define two trap templates for the linkDown
NOTIFICATION-TYPE, add the following property/value pair on the
linkDown node within the IF-MIB:

traps linkDownIf_1|linkDownIf_256

The content of a trap template is then defined by the object property
for each OBJECT-TYPE included in the NOTIFICATION-TYPE‘s
OBJECTS clause.
Because the trapName is also used as method name, it should only
contain letters and digits.
Tip: Use drag & drop to create a new trap definition. Drag a
NOTIFICATION-TYPE or TRAP-TYPE definition from the MIB tree
on the Properties panel’s table. This will add a new trap definition,
including the required objects properties.

useReference Set this property to yes to let AgenPro generate a link between the OID
of the managed object type and the string value of its REFERENCE
clause (or the value of the reference property) using a
LinkedMOFactory.

PROPERTY KEY DESCRIPTION

Table 2: Code generation properties for SNMP4J-Agent.

AGENPRO USER GUIDE
Projects 27

7.3.4 The Code Generated for SNMP4J-Agent

A description of the code generated for SNMP4J-Agent and how to use it
is explained by the SNMP4J-Agent-Instrumentation-HowTo.pdf
file in the installation directory of AgenPro. The How-To also describes
various approaches to instrument a SNMP4J-Agent or -AgentX agent.

7.4 Project Wizard
With the Project Wizard you specify the Velocity templates that should be
used for the code generation and the MIB modules that should be
accessible to those templates.

The wizard is divided into five steps which are described by the following
sections.

value[.rowIndex] AgenPro uses the ‚value‘ property to generate code that initializes the
values of columnar and scalar objects. In addition, this property is used to
set initial values for the built-in simulation agent.

Like other properties, this property affects (unless overwritten in a sub-
node) all OBJECT-TYPE instances in the sub-tree of this node.

This property‘s value must match with the SYNTAX clause of the
instances. For example, an string value ‚Text‘ cannot be used as value for
an OBJECT-TYPE with SYNTAX clause ‚Integer32‘.

For columnar objects you need also to define a “rows” property to create
row instances and thus the instances for the columnar objects. For each
row index, you then have to define the appropriate column value by:

value.<rowIndex>

where <rowIndex> is the complete index value as defined in the
corresponding rows property, for example:

value.v3group;;3;authPriv

volatile If this property is set to yes for a subtree, all objects generated for that
subtree will be volatile and thus excluded from persistent storage and
ManagedObject serialization. Otherwise the generated objects support
ManagedObjectSerializable serialization.

PROPERTY KEY DESCRIPTION

Table 2: Code generation properties for SNMP4J-Agent.

AGENPRO USER GUIDE
Project Wizard28

7.4.1 Job Configuration
Tip: In order to be able to merge
existing code, make sure that the
input directories (and file name
templates respectively) are
provided and point to (copies of)
the existing source code.

The Job Configuration specifies the generation jobs to be processed for this
project. If the "Do not merge with existing code" option is selected, any
given input directory (see below) will be ignored and existing code will not
be preserved. Otherwise, code between protection tags (see “Code
Protection” on page 44) will be parsed and put in a map. The code
generation then extract that code that matches with the ID of a code
protection area to be generated. To support refactorings and template
migration, as of version 5 of AgenPro, code snippet IDs can be mapped.

Environment variables of the operating system can be used within the path
strings. Environment variables may be included in a path string by using
the following format: ${<VARIABLE_NAME>}, whereas
<VARIABLE_NAME> must contain letters, digits and the underscore ('_')
character only.
With the Root Directories panel, you can specify root directories for
relative template paths as well as input and output directories.

As of AgenPro 5.0, using absolute
paths in the template
specification is no longer
recommended, because the
preview Export functions will not
work well with absolute paths and
the new job templates in 5.1 need
a template root directory
specified, to be able to update job
templates from an existing
project.

You may leave these two root directories empty, if you intend to use
absolute paths in the Job specification below, although doing so is not
recommended.
Specifying a template root path is a prerequisite to use Job Templates that
are provided for any code generation template set. By default, you can use
the directory named templates of the accompanied files installation as
template root.

Job Templates
Job template files end with a .jobs suffix and have the same format as
project files. They are located typically in the same directory as the Velocity
Macro (VM) template files.
The job template file contains the job definitions and properties, general
and MIB object specific.
In contrast to project files, MIB modules specific settings are not
supported in job templates.
AgenPro displays all “.jobs” files it can find in the specified templates root
directory and its subdirectories in the corresponding combo box.
Use the Apply button to overwrite (need confirmation) jobs and job
properties as follows:

 Existing job definitions will be removed and replaced by those found
in the selected template.

 Job properties that are provided by the template will be added to the
project. If such a property already exists, it will be overwritten with the
value from the jobs template.

AGENPRO USER GUIDE
Projects 29

Job Definition
Each job consists of the following attributes:

 Job Type

The job type specifies whether this job is executed

 only once per code generation,

 once per MIB module in the module set defined in steps two and
three respectively, or

 once per context generated by a specified selection template or
whether it is executed for each MIB module.

 File Name Generation Template

The file name generation template specifies a Velocity template that
generates a file name. This file name is then appended to the input
and output directories respectively to determine the file name that is
subject to the code generation actually done by running the File Gen-
eration template.
Parent directories for a generated filename that do not exist will be cre-
ated by AgenPro.

 File Generation

The File Generation Velocity template is the template that actually is
responsible for generating the program code. It generates the content
of the file(s) whose name(s) has been determined by the File Name
Generation Template of this job.

 Selection Template

The optional selection template will be executed when the job's type is
"By Selection". A selection template specified for any other job type
will be ignored. A selection template has to produce an output text of
the following format:

<context1>:
[<Module1>=]<object1>[,[<ModuleN>=]<objectN>..];
<...>

where ModuleN is the module name of the MIB specification defining
the MIB object with name objectNameN. There must be generated at
least one context per selection template which has to contain at least
one object name. Specifying a MIB module name for an object name
is optional but recommended since it prevents incorrect mappings
when the MIB modules within a project do not have unique object

AGENPRO USER GUIDE
Project Wizard30

names.
For each context generated by a selection template, an output file will
be generated and the code generation job will be executed with the
contexts described in the section “Customizing Code Generation” on
page 39 for the job type 3. The contexts scalars, tables, traps, etc. will
be filled with the selected objects for the respective context name as
generated by the selection template.

Because default code will not be
replaced with new template code
as long as existing code is found,
you will have to deactivate the
Preserve existing code option in
AgenPro project wizard to
regenerate default code.
But caution: This option affects
the whole code generation run.
Therefore it might be better to
delete/rename the source file that
needs new default code instead.

 Input Directory (Optional)

The input directory can be the same as the output directory or may be
left empty. If the input directory is set to an valid directory, files in that
directory will be parsed for AgenPro tags and the code found between
the tags, is stored in a map.
The key of the map is build by the string that follows the start tag until
the end comment. See “Code Protection” on page 44 for details.
The program code protected by those tags is then available to the gen-
eration template when it generates new code from a probably revised
MIB module definition. Thus, the protected code may be preserved
when an agent is regenerated. This is standard behavior with the
AGENT++ and SNMP4J-Agent templates.
Since AgenPro 4.1 templates can generate so called „default code“,
which is only generated once.

 Output Directory

The output directory specifies the directory where the generated files
should be written to. If the input directory is the same as the output
directory, existing files will be overwritten without further notice. So
backup your agent sources before you run AgenPro.
Filename generation templates might generate filenames that contain
relative directory paths. Such directory hierarchies will be created by
AgenPro before creating/writing an output file.

 Code Formatter

Here you can select a code formatter (see “Code Formatters” on
page 76) that formats the code generation output. If no code formatter
is selected or its configuration is no longer available, then the gener-
ated code will be written as it is. That is, the formatting defined by the
code generation template will be applied only.
With a code formatter defined, you are able to change the coding style
and tab size, without needing to change the templates themselves.

AGENPRO USER GUIDE
Projects 31

7.4.2 Job Properties

The Job Properties wizard step defines global properties for the code
generation project. Properties defined here are available in all job types
using the agenUtils.getJobProperty method.

To Add a Job Property
1. Choose Add New and enter the property name in the empty Property

column in the newly created row in the job properties table.

2. Enter the value in the Value column or choose Edit if you want to
enter a multi-line value.

To Remove a Job Property
1. Select the property to remove in the table and the choose Remove.

New in AgenPro 5.0!7.4.3 User Code ID Mappings

Although MIB modules need to be stable regarding OID definitions,
during development object names and even OIDs may change. In such
cases, you would like to preserve existing code and move it to the
appropriate new or refactored managed object instrumentation.
In addition, code mappings can support template refactoring too.
User code ID mappings allow such a migration of existing code snippets.
In the code generation preview panel, you can search for code IDs and map
them. Those mappings will appear here in the project’s configuration. Of
course, those mappings can be configured here too.
The User code ID of code snippet for a generated file MIB module “DS1-
MIB” is for example dsx1IfIndex::ds1_mib_dsx1IfIndex found
in the following comment in the generated file:

//--AgentGen BEGIN=dsx1IfIndex::ds1_mib_dsx1IfIndex
//--AgentGen END

7.4.4 AGENT-CAPABILITIES Selection

If at least one of the loaded MIB modules contains an AGENT-
CAPABILITIES statement, you may select the „Use AGENT-
CAPABILITIES Statement“ check box. Step two will then replace step
three of the wizard.

AGENPRO USER GUIDE
Project Wizard32

Note: Only leafs in the displayed
tree of available AGENT-
CAPABILITIES statements can be
selected, because folders (other
than the root node) represent the
MIB modules defining the AGENT-
CAPABILITIES under them.

Instead of selecting the MIB modules with step three, using an AGENT-
CAPABILITIES statement has the advantage, that you can specify the
objects to be generated on the object level rather than on the module level.
In addition, AGENT-CAPABILITIES can provide in depth
documentation of an agent implementation.

7.4.5 MIB Module Selection

If you have not specified an AGENT-CAPABILITIES statement in step
two, step three allows you to select a subset of the currently loaded MIB
modules to be used for the code generation or to use all MIB modules
available from the MIB repository at the time of code generation. If you
want to select specific MIB modules uncheck the checkbox at the top of
the dialog and follow the steps below:

 To generate code for a MIB module, that module has to be added to
the table on the right by selecting it and using the Add button.

 To disable code generation for a MIB module, remove it from the
right table by selecting it and then using the Remove button.

If a MIB module is selected for
code generation, then it is a
member of the current project.

MIB modules that are members of the current project are displayed with
bold text in the open MIB modules list left to the MIB tree. By using the
list‘s context menu, the membership of a particular MIB module in the
current project can be changed.
MIB objects for which code will be generated are also displayed with bold
node names in the MIB tree while the simulation agent is running.
Generated MIB objects are objects that are part of the projects MIB
modules or supported by its AGENT-CAPABILITIES and that are not
skipped from code generation by a skip=yes property.

AGENPRO USER GUIDE
Code Generation 33

8 Code Generation

The book Understanding SNMP MIBs by David Perkins & Evan McGinnis
defines MIB specifications as follows:
SNMP Management Information Base (MIB) specifications are documents
containing definitions of management information so that networked systems
can be remotely monitored, configured, and controlled.
In other words, a MIB specification describes the interface between device
and management software. A MIB specification is typically written before
the corresponding SNMP agent and management systems are
implemented. Thus, generating code from MIB specifications provides the
following benefits:

 Code generation ensures that a MIB implementation strictly follows
the corresponding MIB specification which improves the quality of
the implementation.

 Code generation cuts months from your implementation schedule by
automatically generating the SNMP agent. You are able to spend more
time on the agent/manager functionality and less time on implement-
ing interfaces.

8.1 Code Generation Benefits with AgenPro &
AGENT++
The following benefits are specific to the code generation for AGENT++:

 Automatically generates a SNMP agent from MIB modules.

 Transparently provides SNMPv1/v2c/v3 functionality.

 Ensures correct implementation of multiple indexes, table ordering,
row status and storage type textual conventions, variable constraints,
access rules, and notifications.

 Generates notification objects which allow sending a trap with a single
method call while checking that columnar objects are sent with fully
qualified index information and all required variables are provided.

 MIB changes can be easily applied to an existing agent implementa-
tion. The agent is simply regenerated and recompiled. Existing instru-
mentation code is preserved.

AGENPRO USER GUIDE
Code Generation Benefits with AgenPro & SNMP4J-Agent34

 No need for special (non SMI) tags in the MIB files. Thus, any SMI
conform MIB can be used directly for code generation. The configura-
tion can be entirely stored in project files.

 AgenPro can be run from command line for integration with your
build process.

Running autoreconf is only
necessary if you want to use the
autoconf tools for build
management of AGENT++, when
using cmake with AGENT++ 4.5 or
later, running these commands is
not necessary of course.

When generating code for AGENT++ 4.0 or later and you are using
autoconf instead of cmake for build management, then after source files
have been generated the following shell commands need to be executed on
the command line in the agent++ directory:

autoreconf -i

./configure

Of course you can add options to the configure command as needed.
Running those commands make sure, that the newly generated files are
included in the Makefiles of the agenpro directory.

8.2 Code Generation Benefits with AgenPro &
SNMP4J-Agent
The following benefits are specific to the code generation for SNMP4J-
Agent:

 Automatically generates a SNMP agent from MIB modules.

 Transparently provides SNMPv1/v2c/v3 functionality.

 Ensures correct implementation of multiple indexes, table ordering,
row status, storage type and other SNMPv2-TC textual conventions,
variable constraints, access rules, and notifications.

 MIB changes can be easily applied to an existing agent implementa-
tion. The agent is simply regenerated and recompiled. Existing instru-
mentation code is preserved.

 No need for special (non SMI) tags in the MIB files. Thus, any SMI
conform MIB can be used directly for code generation. The configura-
tion can be entirely stored in project files.

 AgenPro provides full Maven integration through its Maven Plugin.

8.3 Code Generation Prerequisites
AgenPro's code generation process is illustrated by figure “Code
Generation Process” on page 36. Before the code generation itself can be

AGENPRO USER GUIDE
Code Generation 35

started by choosing Generate from the Project menu, there are a few
tasks to be done beforehand (steps 1-5):

1. Compile your MIB files into AgenPro's MIB Repository.

2. Load the MIB modules you want to generate code for into the MIB
tree.

3. Create a new project using the project wizard (see “Accessing the Proj-
ect Wizard” on page 15). If you intend to generate code for
AGENT++ or SNMP4J-Agent, then you might want to open the
example projects located in the projects directory of the AgenPro
installation. If you intend to generate code for any other SNMP agent
or manager API, then you should read the section “Customizing Code
Generation” on page 39 first. This is also recommended if you would
like to customize code generation for AGENT++ or SNMP4J-Agent.

4. Assign properties that parameterize the code generation process to
MIB nodes.

5. Save the project.

6. Generate the program code.

AGENPRO USER GUIDE
Code Generation Prerequisites36

Figure 3: Code Generation Process

AGENPRO USER GUIDE
Code Generation 37

8.4 Running Code Generation Jobs
The code generation jobs specified for a project can be run by:

From the command line:
1. Run AgenPro using the agenpro.bat (Windows) or agenpro.sh

(UNIX) files in AgenPro's installation directory as follows:
agenpro.sh <project_file>
where <project_file> is the path of a previously saved project
file.

2. To compile MIB modules into AgenPro's MIB repository from the
command line use:

agenpro.sh -a <MIBFileOrDirectory1> .. <MIBFil-
eOrDirectoryN>

3. To use a specific MIB repository (other than that configured in Agen-
Pro's configuration file) you can use the -r option on the command
line:

agenpro.sh -r <repositoryDirectory> [-l <license>
<licenseKey>] [-c <AgenProConfigFile>] <project_file>

Figure 4: Code Generation Job Execution

AGENPRO USER GUIDE
How Jobs are Processed38

The code will be generated for all
MIB modules found in the input
file(s) and which have not been
excluded by the -e option -
regardless of the settings in the
project unless option -i is given.
Then only those explicitly included
modules will be generated.

4. To directly generate code from a set of MIB files without compiling
them into a MIB repository:

agenpro.sh -m <MIBFileOrDirectory1> [-m <MIBFileOrDi-
rectory2>] [-v] [-i <MIBModuleName1> [-i <MIBModule-
Name2> ..]] [-e <MIBModuleName1> [-e <MIBModuleName2>
..]] [-l <license> <licenseKey>] [-c <AgenProConfig-
File>] [-d <rootDirIO>] [-t <rootDirTemplates>] <pro-
ject_file>

 The -v option replaces variable references of the form ${<name>} in
the value portions of the project properties file with the corresponding
system variable with the name <name>.

 The optional -t and -d options override the template root directory
and the IO root directory of the project specified.

With the -i and -e options MIB modules can be explicitly included
and/or excluded from the code generation. For example:
 -i @SNMP4J-AGENT-TU.* -i DISMAN-SCHEDULE-MIB
will only include MIB modules starting with SNMP4J-AGENT-TU
or named DISMAN-SCHEDULE-MIB.

5. To get help on the command line options, run:

agenpro.sh -h

Using the Graphical User Interface (GUI)

1. From the Project menu, choose Generate .

8.5 How Jobs are Processed
Code generation jobs are processed following the below scheme. If
specified, first the selection template is called where the contexts of the
code generation (for example MIB module, MIB object, or any other
context) are determined and the associated MIB objects are selected from
the available MIB modules in the project. The output of the selection
template has to be of the following form:

<context1>:
[<ModuleName1>.]<objectName1>[,[<ModuleName2>.]<ob-
jectName2>..[,[<ModuleNameN>.]<objectNameN>]
;
<...>

where ModuleNameN is the module name of the MIB specification
defining the MIB object with name objectNameN. There must be

http://www.perldoc.com/perl5.6/pod/perlre.html

AGENPRO USER GUIDE
Code Generation 39

generated at least one context per selection template which has to contain
at least one object name. Specifying a MIB module name for an object
name is optional but recommended since it prevents incorrect mappings
when a project's MIB modules do not have unique object names.
Using selection templates allows to individually select which objects to be
generated in which files. By leaving the selection template column empty,
one of the standard code generation options Once and For each module
must be chosen. For most agents using the standard templates is sufficient
and provides the best code generation performance. By using one of the
standard code generation options, the code generation job starts with step
2 below.

The file name generation template is called. Depending on the job type,
the context provided by the generation template is used to generate the file
name for the file(s) generated by this job. The output of the template is
appended to the job's input and output directory to form the paths for the
input and output files respectively.
If an input directory has been specified for the job, then the corresponding
input file will be scanned for user code protection tags of the forms
described in “Code Protection” on page 44, for example:

//--AgentGen BEGIN=<class>[::<method>]
<any program code that is protected during a
(re)generation>
//--AgentGen END

The program code found between the tags will then be stored in a
Hashtable accessible through the context existingCode. The key for
the Hashtable entries is built using the form:
<class>[::<method>].
Finally, the code generation template is called with the contexts described
in the section “Customizing Code Generation” on page 39. The produced
output is written to the output file(s) specified by the generated file
name(s) and the given output directory. If output and input directory are
the same, then the input file(s) will be overwritten by the generated output.

8.6 Customizing Code Generation
An outstanding feature of AgenPro is its flexibility. The complete code
generation process can be customized which allows to write code
generation from SNMP MIB specifications for virtually any programming
language and SNMP agent or manager API.

AGENPRO USER GUIDE
Customizing Code Generation40

AgenPro's code generation templates are based on VTL, the Velocity
Template Language from Apache. Also VTL, in the first place, is designed
for generating text or HTML output with dynamic content, its clear
differentiation between model, view, and controller (MVC) makes it also
a first choice for code generation.
The control structures provided by VTL are limited, but they also make it
easy for users with little or no programming experience to write scripts
based on VTL. Supported control statements are #if..#else..#end to
conditionally execute statements and #foreach..#end to execute
statements for each element of a given list. With the #macro statement
parts of script that are frequently used can be combined into a function
that can be called in the template by #<macro_name>. Please refer to the
VTL user guide or the VTL reference for a complete description of the
VTL language.
An AgenPro template differs from any other Velocity Macro (VM) only by
the model AgenPro provides for the template. The Model is accessed from
a VM through contexts.
AgenPro offers three kinds of code generation jobs that provide different
sets of contexts:

1. jobs that are run once per code generation

2. jobs that are run once per MIB module

3. jobs that are run once per each context generated by a selection tem-
plate.

For most use cases, the first two job types are sufficient and provide the
best performance. However if you need full flexibility, the third type
would be the best choice. The first two types are used by the standard
AGENT++ code generation projects whereas the third is used by the more
advanced example project that selects the MIB objects to generate by a
VTL template and generates each table and each scalar and notification
object in its own set of source files. The SNMP4J-Agent default templates
also use a context selection template.
The contexts supported by the three job types are listed in the below table
and grouped as follows:

1. The first group of Velocity contexts provide utility functions and ser-
vices that are independent from the chosen job generation type.

2. The second group of Velocity contexts provide access to objects avail-
able in the job's current file context. When running a job of type "by
selection", then there might by more than one file context per job
execution. In any other case, these Velocity contexts of this group will
not change during the execution of the job.

AGENPRO USER GUIDE
Code Generation 41

3. The third and last group of Velocity contexts provide access to the
MIB modules and module names that were selected in step three of
the code generation wizard. When executing a job of type "by selec-
tion" the content of these Velocity contexts remain the same, regard-
less for which file contexts code generation templates are executed. To
get the MIB modules selected by a selection template for a particular
file context, use the contextModules and contextModuleNames
Velocity contexts.

CONTEXT CLASS JOB DESCRIPTION

existingCode Map all The existingCode context contains the
protected code snippets collected from the input
file, if an input directory had been specified.
Otherwise, the Hashtable is empty. The key
for the Hashtable entries is built using the
form: <class>[::<method>].

agenUtils AgenUtils all The agenUtils context provides various
utility functions supporting the analysis of MIB
content. For example, retrieving MIB objects by
name and getting the effective syntax of an
OBJECT TYPE.
In addition, it provides access to the properties
defined for a code generation project.

agenStringUtils AgenString
Utils

all The agenStringUtils context provides
string utility functions to search and replace
strings using regular expressions.

agentCapabilities IAgentCapa
bilities

all This context is only available if a AGENT-
CAPABILITIES statement has been selected for
this project in the corresponding project wizard.
It provides access to the selected statement's SMI
definition.

module IModule 2,3* The module context provides access to the
target MIB module of this code generation job.

moduleName String 2,3* The name of the target MIB module (e.g.
SNMPv2-MIB).

moduleNameNoHyphen String 2,3* The name of the target MIB with hyphen "-"
replaced by underscores "_" (e.g. SNMPv2_MIB).

AGENPRO USER GUIDE
Customizing Code Generation42

context String 2,3 The context name string generated by the
selection template. This can be any string that
must not contain ";", ",", and "=" characters. In
case of jobs of type 2, the context name string
equals the moduleName.

contextNoHyphen String 2,3 The context name string generated by the
selection template where hyphen characters ("-")
are replaced by underscores ("_").

contextModules List 2,3 The contextModules Velocity context
provides access to all IModule instances selected
for the current file context. In case of a job of type
"once per module", the contents of this
Velocity context is the same as modules.

contextModuleNames List 2,3 The contextModules Velocity context
provides access to all MIB module names selected
for the current file context. In case of a job of type
"once per module", the contents of this
Velocity context is the same as moduleNames.

contextObjects List 3 The contextObjects Velocity context
provides access to all IObject instances selected
for the current file context.

scalars List 2,3 The scalars context provides access to all
scalar OBJECT-TYPE definitions of module.

tables List 2,3 The tables context provides access to all table
objects defined in module. Table objects are
those OBJECT-TYPE definitions that have an
INDEX clause. The objects are ordered by their
object identifier (OID)

tablesByDependenci
es

List 2,3 The tablesByDependencies context
provides access to the same table objects as the
context tables, but in different order. Tables
with an INDEX clause „AUGMENTS“ will
succeed tables which those tables depend on. Thr
remaining tables are sorted by their object
identifier (OID).

CONTEXT CLASS JOB DESCRIPTION

AGENPRO USER GUIDE
Code Generation 43

columns Map 2,3 The columns context provides access to all
columnar OBJECT-TYPE definitions. The keys
of the Map are the table objects in the table
context Vector. By calling the get method of
the columns Map all columnar objects of the
corresponding table are returned as a List of
IObjectType instances.

indexes Map 2,3 The indexes context provides access to the
index objects of table objects. The keys of the
Map are the table objects in the table context
List. By calling the get method of the columns
Map all index objects of the corresponding table
are returned as a List of IObjectType
instances.

notifications List 2,3 The notifications context provides access
to all trap and notification objects defined in
module. Notifications are TRAP-TYPE
(SMIv1) or NOTIFICATION-TYPE (SMIv2)
definitions.

identities List 2,3 The identities context provides access to all
OBJECT-IDENTITY definitions defined in
module. This list is empty for SMIv1 MIB
modules.

fileName String all† The output (file name) generated by the file
name generation template. Consequently, this
context is not available in the file name
generation template itself.

fileNameNoDot String all† Same as above but dots "." in the filename are
replaced by underscores "_".

contexts List 3 All contexts generated by the selection template.
For each of the context string in this vector there
will be an output file generated. To get the index
of the current context within a code generation
template, the
$contexts.indexOf($context) method
can be used.

CONTEXT CLASS JOB DESCRIPTION

AGENPRO USER GUIDE
Customizing Code Generation44

8.6.1 Code Protection

Since AgenPro 4.1 the following type of comments are supported:

modules List 1,3 The modules context provides access to all
MIB modules (IModule instances) for that
program code should be generated.

moduleNames List 1,3 The moduleNames context provides access to all
MIB module names (String instances) of the
target modules.

*. Although these contexts are available in jobs of type 3, its use is not recommended because the
MIB module referenced is the first MIB module that occurs in the generated contexts. Any other
MIB modules used in the context will be hidden by these contexts. Instead of using such a con-
text, the $agenUtils.getModule(IObject) method should be used to determine the MIB
module for a MIB object.

†. These contexts are not available in code generation templates.

CONTEXT CLASS JOB DESCRIPTION

COMMENT

START/
END

TAG
START/END

EXAMPLE

// |:AgenPro|=
|AgenPro:|

//|:AgenPro|=_helloWorld

String msg = "Hello World";
System.out.println(msg);

//|AgenPro:|

// --AgentGen BEGIN=
--AgentGen END

//--AgentGen BEGIN=_helloWorld

String msg = "Hello World";
System.out.println(msg);

//--AgentGen END

/*
*/

|:AgenPro|=
|AgenPro:|

/*|:AgenPro|=_helloWorld*/

String msg = "Hello World";
System.out.println(msg);

/*|AgenPro:|*/

Table 3: User code protection comments and tags.

AGENPRO USER GUIDE
Code Generation 45

The Tags containing the character
sequence AgentGen are still
supported but should not be used
for new development.

The tags starting with a // comment do not have an end comment.
Instead, the line end terminates the string after the equal sign of the tag.
That string following the start tag, is used as key for the parsed code
between the tags. The key must be unique per source (input) file.

<!--

-->

|:AgenPro|=
|AgenPro:|

<!--|:AgenPro|=pom.xml-->#if
($existingCode.get("pom.xml"))

$existingCode.get("pom.xml")

#else
<project></project>

#end

<!--|AgenPro:|-->

#--
--#

|:AgenPro|=
|AgenPro:|

#--|:AgenPro|=agen.properties--#

#if ($existingCode.
get("agen.properties"))

$existingCode.get("agen.properties")

#else

snmp4j.agent.cfg.contexts=

#end
#--|AgenPro:|--#

COMMENT

START/
END

TAG
START/END

EXAMPLE

Table 3: User code protection comments and tags.

AGENPRO USER GUIDE
Code Preview and Mapping46

8.7 Code Preview and Mapping
Since version 5.0, AgenPro provides a live code generation preview. The
preview is enabled by default and can be enabled/disabled using the
Preview check box of the Project menu or directly on the Preview icon
() of the tool bar.
Live previewing the code generation allows you to quickly check how

modifying the code generation settings affect the generated files. Especially
using the code snippet mapping can help moving existing code to renamed
MIB objects when updating to the code to match refactored MIB modules.

When live preview is enabled and changing any of the following:

 code generation project definition

 properties

Figure 5: Code generation preview panel showing differences between existing and generated file

AGENPRO USER GUIDE
Code Generation 47

 any of the input files

AgenPro will run code generation as defined, but instead of creating or
modifying files in the target directories, files are generated into
corresponding temporary directories.
Figure 5 shows the table representing the code generation jobs executed
and the files generated for each job. By selecting a row in that table, the
differences between the current file (on the left) compared with the
generated file (on the right) will be computed and displayed.
Changes are displayed with colored background:

 orange

block has been deleted

 red

block has been modified

 green

block has been added

While reviewing the changes, you can either edit the source file or the code
generation template that produced the output file by using the context
menu in the preview table:

 Edit Input File

Opens the input file (if defined) with the system’s editor associated
with input file’s extension.

 Edit Code Template

Opens the code template file generated the selected job output file
with the system’s editor associated with the extension of the template.

If any of the input files or the code templates are updated and live preview
is enabled, then AgenPro will run the preview code generation again.

8.7.1 Map Protected Code

As explained in “Code Protection” on page 44, there are areas in generated
code, that can be retained when a file is regenerated. This works because
the IDs of the protected areas are the same in input files and output files.
Generated code that is related to MIB object definitions contains the name
of the MIB object in their code IDs. Thus, when the name of the MIB
object changes during development of a MIB module, the protected code
areas cannot be preserved because the IDs of the code areas (snippets) do
not match anymore.

AGENPRO USER GUIDE
Code Preview and Mapping48

To mitigate such refactoring issues, mapping code IDs from input to
output file IDs can be done easily in the preview panel:

1. Start typing the object name (or other code snippet ID prefix) in the
“Existing Code:” text field.

2. Use the completion function with the up/down keys to select an
existing code snippet ID.

3. Enter the new/refactored object name (or other code snippet ID pre-
fix) in the “Generated Code:” text field.

4. Save the new or updated mapping to the current project definition by
pressing the Map button.

Mappings can be removed by selecting them in the list and pressing the
Unmap button.
Alternatively mappings can be deleted and created using a wildcard
notation too. This can be done by appending the asterisk character (*) as
last character of both code IDs (input/existing and output/generated).
By then pressing Map or Unmap, AgenPro will search for existing code
snippet IDs that begin with the specified prefix and will map them to the
specified pattern by creating those individual entries in the mapping table
(Map).
Otherwise, if Unmap is pressed, any matching mappings - regardless if
existing code ID matches the specified prefix or the generated code ID
prefix matches - will be removed from the mapping table.

8.7.2 Write or Export Preview Code

There are three options to directly use the code generated for the preview:

Write Selected

The table with the generated files for each code generation job has a
column Selected where generated files can be selected to be taken
into account for this operation. By default, all files are selected. By
pressing this button, the files generated for the preview will be copied
to the originally defined target location.

Write to Directory

Works similar to Write Selected, i.e. it will only write files selected in
the preview table.

Note: If the project specification
does not specify a root folder, i.e.
uses absolute paths in job
definitions, then this operation
will not work as expected.

The first and main difference is, that you can select the root folder
where the generated files should be written to. Second, you will be
asked if existing files should be overwritten or not.

AGENPRO USER GUIDE
Code Generation 49

 Export All Files as ZIP

Add all generated files, regardless if selected or not, to a ZIP file using
the relative paths as defined in the job definitions (without common
root parent path). Then save the ZIP file to the file specified by a file
chooser dialog.

8.8 AgenPro Maven Plugin
The AgenPro Maven Plugin can be
used to generate code for any
language or format by using
customized code generation
templates. However the
integration for Java is the primary
use case.

Although the AgenPro command line interface provides already means to
integrate AgenPro into an automated build process, the AgenPro Maven
Plugin further improves and facilitates this integration for Java.

8.8.1 Upgrade From AgenPro Maven Plugin Version 3

Version 3.x of the AgenPro Maven plugin used Maven 2.x. With version
4 you need to use at least Maven 3.1.1 or later.
The Plugin now overwrites the Job Property package with the
<packageName> parameter provided in the plugin configuration. This
behavior is new and might cause problems if you used the MIB node based
property package in your custom template code (or if you need to use old
templates for SNMP4J-Agent 1.x).
The MIB node attribute will not be overwritten anymore by the Maven
plugin and because the MIB node attribute has precedence over the job
property package the MIB node value will be used by the generation
templates.

8.8.2 Maven Plugin Installation

To install and use the AgenPro Maven Plugin you need

 Maven 3.1.1 or later

 AgenPro 5.0 or later.

Maven is available under the Apache License and is available for download
from http://maven.apache.org.

Maven Repository Settings
Before you can start to install the AgenPro Maven Plugin you need to setup
a local repository for your Maven installation and to specify a shortcut for
the AgenPro Maven plugin prefix.
You can define your Maven settings in the settings.xml file in the .m2
directory within your home directory. The settings.xml file should
contain at least the following configuration:

http://maven.apache.org

AGENPRO USER GUIDE
AgenPro Maven Plugin50

<settings>
<pluginGroups>

<pluginGroup>com.agentpp.agenpro.maven.plugins
</pluginGroup>

</pluginGroups>
<localRepository>C:/maven/repo</localRepository>

</settings>

The pluginGroups element specifies a shortcut for the plugin and the
localRepository element where local third-party libraries can be
stored (cached).

SNMP4J and SNMP4J-Agent JARs
Download SNMP4J and SNMP4J-Agent JAR files from https://snmp.app/
dist/release/org/snmp4j and unpack them in a local folder. Then run the
following Maven commands from the dist and lib directories
respectively:

mvn install:install-file -Dfile=SNMP4J.jar
 -DgroupId=org.snmp4j -DartifactId=snmp4j
 -Dversion=3.4.4 -Dpackaging=jar -DgeneratePom=true

mvn install:install-file -Dfile=SNMP4J-Agent.jar
 -DgroupId=org.snmp4j -DartifactId=snmp4j-agent
 -Dversion=3.3.6 -Dpackaging=jar -DgeneratePom=true

AgenPro JAR
Download the AgenPro.jar file and install it into your Maven
repository:

mvn install:install-file -Dfile=agenpro4.jar
 -DgroupId=com.agentpp.agenpro -DartifactId=agenpro
 -Dversion=4.0.0 -Dpackaging=jar -DgeneratePom=true

AgenPro Maven Plugin
Download the AgenPro Maven plugin and install it into your Maven
repository:

Please always adjust the
version parameter to the
actual version of the plugin you
are installing.

mvn install:install-file -Dfile=agenpro4-plugin.jar
 -DgroupId=com.agentpp.agenpro.maven.plugins
 -DartifactId=agenpro-plugin -Dversion=5.0.0
 -Dpackaging=jar -DgeneratePom=true

8.8.3 Using the AgenPro Maven Plugin

After installation of the plugin and the JARs it depends on, you can setup
your SNMP agent Maven project. As a starting point for your own project,

https://server.oosnmp.net/dist/release/org/snmp4j
https://server.oosnmp.net/dist/release/org/snmp4j

AGENPRO USER GUIDE
Code Generation 51

use the template project provided in directory agenpro-mvn-task of
the AgenPro‘s installation directory.

The execution of the
help:describe goal should
print a description of the
agenpro goal and its
parameters. If you get a Maven
error instead, please check if the
AgenPro plugin is properly
installed according to the
description in “Maven Plugin
Installation” on page 49.

To get a description of the plugin options, execute the following Maven
goal:

mvn help:describe -DartifactId=agenpro-plugin
 -DgroupId=com.agentpp.agenpro.maven.plugins -Ddetail

Before you can use the AgenPro Maven plugin you will have to configure
your license key first. Edit the settings.xml file in your .m2 directory
(see “Maven Repository Settings” on page 49) and add the
agenProLicenseKey property as follows:

...
<profiles>
 <profile>
 <properties>
 <agenProLicenseKey>lic / key</agenProLicenseKey>
 </properties>
 </profile>
</profiles>

Now edit the pom.xml file in the agenpro-mvn-task directory to
define

1. the directory where the plugin should search for MIB specification
files

2. the MIB modules from that files you want to generate code for

3. the AgenPro project file that contains the code generation settings and
properties.

By default, the project file for the latest SNMP4J-Agent release is used and
the MIB specifications are read from the src/main/smi folder.

Creating and Compiling the SNMP Agent
To create a simulation agent based on Agent.java run Maven with

mvn clean install

in the agenpro-mvn-task directory. Maven will then generate the Java
classes for the specified MIB modules in the src/generated folder,
compile them together with the Agent.java class and build a JAR with
(and without) all dependencies included in the target folder.

AGENPRO USER GUIDE
AgenPro Maven Plugin52

Running the SNMP Agent
To run the created agent simply execute

java -jar snmp4j-agenpro-agent-1.0-SNAPSHOT-jar-with-
dependencies.jar udp:0.0.0.0/4700

The above command will run the agent on all local IP addresses on port
4700 using the UDP protocol.

AGENPRO USER GUIDE
Simulation Agent 53

9 Simulation Agent

AgenPro provides a built-in simulation agent to facilitate and accelerate
SNMP agent development. Without a complete code generation,
compilation and agent startup cycle, the simulation agent provides an
instant test environment for an early validation of a MIB design.
The simulation agent can simulate scalar and tabular values. In addition,
notifications can be sent that use the simulated values. The simulation
values and notifications are defined by properties (see “Properties” on
page 16).
The simulation values are also used by the SNMP4J-Agent code
generation templates to generate initialization code that sets initial values
for scalars and creates rows for tables. The so generated code can be used

 to implement static MIB data or

 as example/template code by programmers to code instrumentation
manually.

The simulation agent is also capable of sending notifications (traps). To
avoid common errors and misunderstandings, the notification payload is
not provided directly/interactively. Instead only the reference to the
agent‘s data needs to be specified. This follows the SNMP
recommendation trap-directed polling:

SNMP is built around a concept called trap-directed polling. Management applications
are responsible to periodically poll SNMP agents to determine their status. In addition,
SNMP agents can send traps to notify SNMP managers about events so that SNMP
managers can adapt their polling strategy and basically react faster than normal polling
would allow. [RFC 5345 §3.6]

Applied to notification sending, the trap-directed polling concept requires
that any value (information) sent by a notification is also retrievable by
polling which is, in the end, sending GET-like SNMP requests. AgenPro
supports this concept as it generates code to fire traps by providing
references in place of values.
A reference in this context is the instance object identifier. The object type
(class) identifier is defined by the OBJECTS clause of a
NOTIFICATION-TYPE. The instance identifier is then the .0-suffix for
scalars and the index OID for tabular objects.

AGENPRO USER GUIDE
Simulation Agent Configuration54

When defining traps for a simulation agent, you first define the name of
the trap. This name is different from the NOTIFICATION-TYPE object
name as it identifies a reference set rather than a notification type. The
second step is then defining the references (see “Simulation Properties” on
page 57 for details).
The following sections describe how a simulation agent is configured,
started and used at runtime.

9.1 Simulation Agent Configuration
The Agent panel has four settings defining the agent‘s configuration.
The configuration is divided in

 an initial configuration,

 persistent data, and

 simulation data.

The configuration is loaded on start-up in this sequence. Thus, persistent
data loaded from the configuration file for persistent MIB data, overwrites
initial configuration, and simulation data overwrites any other
configuration - provided that it actually redefines it.
Thus, if the persistent data does not contain any information on a MIB
object with object identifier x.y, then it will not overwrite an initial
configuration of that object.
However, on the next restart, the initial configuration will be overwritten
if the MIB object has persistent its data meanwhile.

AGENPRO USER GUIDE
Simulation Agent 55

Table 4 on page 56 provides a description of the parameters and
configuration settings available for the built-in simulation agent.

AGENPRO USER GUIDE
Simulation Agent Configuration56

FIELD DESCRIPTION

Parameters Primarily, the parameter field defines the UDP and TCP addresses the simulation
agent should listen on. The syntax is:

[(udp|tcp|tls|dtls):]<address>/<port> ..

where address is any IPv4 or IPv6 IP address or host name, port is the UDP or
TCP port. By default 161 is used for SNMP agents, which requires super user
privileges on UNIX systems. At least one address must be specified otherwise the
agent will be started with udp:0.0.0.0/161.
In addition, boot counter and the persistent configuration storage file can be
specified:

[-bc <bootCounterFile>]
[-c <configFile>]
[-ts <tableSizeLimitProperties>]
[-e <hex-string-engineID>

By default AgenPro uses AgenProSim.bc as boot counter file and
AgenProSim.cfg as config file. Both files are stored in the user‘s home directory.
If the -ts option is not provided, no table size limits apply.
If the -e option is not provided, a new engine ID with a random 4 byte part is created
on agent first start-up.

For (D)TLS configuration the following optional parameters are available:

[-tls-version TLSv<1|1.1|1.2|1.3>]
[-dtls-version TLSv<1|1.1|1.2|1.3>]
[-tls-trust-ca <ca-name>]
[-tls-peer-id <peer-id>]
[-tls-local-id <local-id>]

The following parameters must to be specified when AgenPro is started on the
command line if needed:

[-Djavax.net.ssl.keyStore <keystore-file>]
[-Djavax.net.ssl.keyStorePassword <keystore-password>]
[-Djavax.net.ssl.trustStore <truststore-file>]
[-Djavax.net.ssl.trustStorePassword <truststore-password>]

For Diffie-Hellman kick-start:

[-dhks <diffie-hellman-kickstart-params-file>]

Table 4: Simulation agent start configuration settings.

AGENPRO USER GUIDE
Simulation Agent 57

9.1.1 Simulation Properties

There are four properties that define the content and behavior of a
simulation agent: value, rows, traps, and object. Scalar and tabular
data is defined by value and rows. Traps (notifications) are defined by

MIB Data
Config File

The simulation agent stores its actual MIB data in a file when the agent is stopped.
When started again, that data is loaded again after the initial configuration has been
loaded.
The file name is provided by the -c parameter (or its default value).
If the parameter text field contains syntax errors, those will be displayed in this text
field instead of the path, because then the path could not be determined from the
parameters field content.
With the check box Reset persistent data you may ignore any saved MIB data from
the configuration file at start-up. This is useful, if the data got inconsistent or should
be reset for each run.

Initial
Configuration

The optional initial configuration file is read at agent startup and should initialize the
simulation independent MIB objects, like SNMP-VIEW-BASED-ACM-MIB,
SNMP-USER-BASED-SM-MIB, SNMP-TLS-TM-MIB, and SNMP-
NOTIFICATION-MIB. The file format is one of the following:

1. the SNMP4J properties format as defined by the PropertyMOInput class.

2. a XML file that complies to the XML schema MIBConfig.xsd.

If no initial configuration is provided, the default configuration is loaded, which
matches the configuration represented by the AgentConfig.properties file in
the examples directory of the AgenPro installation.

Simulation
Data

With simulation data XML file the simulated MIB object values of the agent can be
modified at runtime by modifying this file.

The file format is a XML file that complies to the XML schema MIBConfig.xsd.

If a simulation data file is configured, the synchronization of Properties and the
SNMP agent data is disabled. Otherwise, updates from the simulation data file will be
propagated to the properties and vice versa. That could lead to inconsistent or
unexpected results.

Simulation
Refresh

Defines how often (in seconds) the file specified by Simulation Data is checked for
updates. If a new file (updated file) is detected, its content is read and the MIB objects
of the agent are updated accordingly.

FIELD DESCRIPTION

Table 4: Simulation agent start configuration settings.

http://www.snmp4j.org/agent/doc/org/snmp4j/agent/io/prop/PropertyMOInput.html
http://www.agentpp.com/agen/MIBConfig.xsd
http://www.agentpp.com/agen/MIBConfig.xsd

AGENPRO USER GUIDE
Simulation Agent Configuration58

traps and object. For a description of those properties see table “Code
generation properties for SNMP4J-Agent.” on page 22.
The figure “Example properties to simulate table data.” on page 58 shows
a MIB tree detail from the IF-MIB (RFC 2863). The properties tabs‘
content for those tree nodes with properties defined are shown by overlay
tables.

The first row shows the rows property defined for the ifEntry
(1.3.6.1.2.1.2.2.1) object identifier. This property is then inherited by all
columns under the table entry object. The inheritance has a welcome side
effect: when entering the column instance value properties, you always see
the rows property with the defined index value(s).
Simulation Properties can be very easily edited using the Agent Data panel.

Figure 6: Example properties to simulate table data.

AGENPRO USER GUIDE
Simulation Agent 59

To ease entering the simulation data, row indexes and values are provided
in their native format as described by Table 5 on page 59.

SMI SYNTAX NATIVE FORMAT DESCRIPTION

OCTET STRING Valid formats are:

1. If the object type has a DISPLAY-HINT clause, then the native form is
that format. A common example is the DisplayString textual con-
vention. As that format specification uses ASCII characters, you can
specify such a value by simply using its textual representation as long as
it does not contain control characters.

2. Otherwise, an OCTET STRING is specified as a hex-string where each
byte is represented as a hexadecimal value and bytes are separated by
colon or space. The string „Hello 1 world“ has to be formatted as
„04 0d 48 65 6c 6c 6f 20 31 20 77 6f 72 6c 64“, for
example.

OBJECT IDENTIFIER Valid formats are:

1. the object name: sysName

2. a dotted OID string: 1.3.6.1.2.1.1.5

3. an object name prefix and a dotted OID string suffix: sysName.0

4. an object name or OID prefix and then fixed length strings with single
quotes or variable length strings with double quotes. Enumerated sub-
index objects can be specified by their label text and their value number
or both combined where the number is enclosed in brackets :
vacmAccessContextMatch."v3"."".3.'noAuthNoPriv(1)'
vacmAccessContextMatch.2.118.51."".3.1

Integer32, INTEGER,
Counter32, Counter64,
Gauge, Gauge32,
Unsigned32

These values are provided as decimal numbers.

INTEGER { enum, ..} Valid formats are:

1. the enumerated value‘s label (e.g., enum) or

2. the integer value associated with a label.

3. the enumerated value‘s label and the integer value enclosed in parenthe-
sis: noAuthNoPriv(1)

Table 5: The native representation formats for all SMI base syntaxes.

AGENPRO USER GUIDE
Simulation Agent Configuration60

To remove all properties within a
sub-tree, use Remove Properties
menu item in the MIB tree context
menu of a MIB node.

The properties value and rows can be imported from a SNMP4J or MIB
Explorer snapshot file by using the Import... button on the Agent tab. The
import will add value and the corresponding rows properties for all variable
bindings in the snapshot file. If a node of the MIB tree is selected, only
those variable bindings are imported whose object identifiers belong to the
selected sub-tree.

9.1.2 Agent Data

The Agent Data panel provides direct access to the simulation agent data.
It can be used to view and edit simulation data. The panel can be used only
while the simulation agent is running. If it is not running, the panel will
be empty and no data can be edited or displayed.

If simulation data sources are
used as described in “Simulation
Data” on page 61, the
synchronization between the
Agent Data panel and the
Properties panel should be
deactivated to avoid unintended
overwriting properties if the agent
data is directly edited.

To view the data associated with a MIB object, select the object in the MIB
tree. Table and columnar objects will always be displayed in a table view.
Scalars will be displayed and edited as a single value.
You can edit any displayed value, except index columns of SNMP tables.
To change the index of a row, you need to delete the row and then recreate
it with a different index.
The format of the data follows the MIB OBJECT-TYPE SYNTAX clause
of the corresponding MIB object. If no special DISPLAY-HINT is given
by the OBJECT-TYPE definition then formats as described by “The
native representation formats for all SMI base syntaxes.” on page 59 have

BITS { label1, ...} Valid formats are:

1. a binary string where each bit of a byte is represented as 1 or 0 and bytes
are separated by spaces, for example, if bits 1, 5, and 9 are set, the their
native format is „01000100 10000000“

2. a list of bit names enclosed in curly braces ({,}) and separated by com-
mas, for example, provided that the bit labels are bit0 for first bit and
bit7 for the eight, then the above BITS value can be written as
„{bit1,bit5,bit9}“.

IpAddress An dotted string with for numbers: 192.168.1.1

Opaque a hex-string where each byte is represented as a hexadecimal value and bytes
are separated by colon or space.

TimeTicks An integer number represented in units of hundreds of a second.

SMI SYNTAX NATIVE FORMAT DESCRIPTION

Table 5: The native representation formats for all SMI base syntaxes.

AGENPRO USER GUIDE
Simulation Agent 61

to be used. If an entered value cannot be translated to an basic SNMP
value, the corresponding cell will get a red background and the change is
not propagated to the simulation agent or the Properties panel.
By external updates through SNMP or through the XML simulation data
loader, the agent‘s internal state may differ from the current view provided
by the Agent Data panel. To update the view, press the Reload button.
Data changes are committed to the agent when a different panel or
different node in the MIB tree are selected or if the Save button is pressed.
With the Undo and Redo buttons recent changes on the same MIB object
can be undone or redone.

To Add New Row To a SNMP Table
An new row is added to a tabular object with the Add Row button. A
popup will prompt for the rows index value. The expected sub-index
values and their format is provided by a minimal index value as default
value. The following sub-index formats are supported:

 A numeric value, represented by a 0 digit, for Integer32, Count-
er32, Counter64, and Unsigned32 syntaxes.

 A string value with variable, implied or fixed length. Fixed length and
implied length strings are enclosed in single quotes. Variable length
strings are enclosed in double quotes. IpAddress (IPv4) values
should be entered enclosed in single quotes.

To Remove Rows From a SNMP Table
1. Select the rows to remove. Unintended cell editing can be stopped by

pressing <Esc>.

2. Press the Remove Row button. The rows will be immediately
removed from the underlying table. The Properties of the MIB table
will be updated if data synchronization is enabled.

9.1.3 Simulation Data

As there are the properties value and rows to define simulation (and
code generation) data information, you may ask why we need yet any other
way to provide simulation data?
Properties are best to define initial and ad-hoc simulation data, but
properties are not best suited to automate simulation data modification
from third party applications or processes. For that purpose, XML is well
supported and understood interchange format. The schema for AgenPro
simulation data is defined by MIBConfig.xsd which is located in the

AGENPRO USER GUIDE
Simulation Agent Configuration62

xsd directory in the AgenPro accompanied files installation directory (see
“Install Templates, Example Projects, and MIBs” on page 5 for
information on how to install those files).
A simulation data XML file can be configured on the Agent tab as
described by “Simulation agent start configuration settings.” on page 56.
The file is read on agent startup after the configuration file (if present) and
it is reread at the specified refresh rate. If the file is written by another
application while AgenPro tries to read it, incomplete reads may occur
which, in the worst case, prevent that the simulation data is being updated
in this refresh cycle. To avoid such situations, it is recommended to replace
the simulation data file by moving it on the file system instead of directly
writing to it.
A XML simulation data file supports data initialization and delta updates:

 MIB object values not defined by a XML file will not be changed
when the file is loaded.

 Scalar values defined in the XML define the corresponding value for
the simulation agent.

 Tabular values (rows) can be created, replaced (includes creation), and
deleted.

The following XML file is a small usage example:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MIBConfig.xsd">

 <object name="nlmConfigGlobalAgeOut">
 <scalar>101</scalar>
 </object>

 <object name="nlmStatsLogTable">
 <row>
 <i>logName</i><i>1</i> <c>100</c><c>200</c>
 </row>
 <row>
 <i>logNameNext</i><i>2</i> <c>300</c><c>400</c>
 </row>
 </object>
</config>

This example can be loaded successfully only if the MIB module
NOTIFICATION-LOG-MIB from RFC 3014 is loaded into AgenPro.
Otherwise, AgenPro is not able to resolve the object names and it will not
able to parse the values. As a simulation agent without corresponding MIB

AGENPRO USER GUIDE
Simulation Agent 63

module(s) does not make any sense, this is not a real constraint,
nevertheless important to bear in mind.
Instead of specifying object names, also object identifiers can be used:

 <object oid="1.3.6.1.2.1.92.1.1.2">
 <scalar>101</scalar>
 </object>

When using object names, it might by necessary to also specify the MIB
module to avoid ambiguities:

 <object name="sysContact" module="SNMPv2-MIB"
 oid="1.3.6.1.2.1.1.4">
 <scalar>System Administrator</scalar>
 </object>

Tabular data is defined row by row. For each row, a value (or null) has
to be specified for each column. The object identifier of a particular cell of
a table is defined as

class-oid.sub-index-1[.sub-index-2[...]]

where class-oid is the object identifier of the column OBJECT-TYPE
definition, and sub-index-1 is the value of the first (virtual) object in
the table‘s INDEX clause. The values of the index objects are encoded as
OID. The simulation data XML provides two approaches to specify the
index of a row:

1. Using the index attribute of the row element. The index attribute
must specifies the complete index OID value (everything after
„class-oid.“) as dotted string.

2. Using <i> elements (one <i> element per INDEX object). Each <i>
element specifies a sub-index value in its native representation as
described by “The native representation formats for all SMI base syn-
taxes.” on page 59. An <i> element must contain an OID only if, the
corresponding sub-index object type has the base syntax OBJECT
IDENTIFIER.

The INDEX clause of the
ifEntry OBJECT-TYPE
definition is simple because it
contains only a single sub-index
object, the ifIndex OBJECT-
TYPE.

The following example shows how the simple INDEX clause of the
ifTable can be specified:

 <object name="ifTable" module="IF-MIB"
 oid="1.3.6.1.2.1.2.2.1">
 <row index="1000">
 <i>1000</i>
 <c>1000</c>
 <c>en1-0</c>

AGENPRO USER GUIDE
Simulation Agent Configuration64

 <c>6</c>
 <c>1500</c>
 <c>100000000</c>
 <c>00:a0:f9:0c:4e:5b</c>
 <c>1</c>
 <c>1</c>
 <c>130156800</c>
 <c>1099008784</c>
 <c>1451652</c>
 <c>8240</c>
 <c>0</c>
 <c>0</c>
 <c>0</c>
 <c>1180600057</c>
 <c>1517714</c>
 <c>835</c>
 <c>0</c>
 <c>0</c>
 <c>0</c>
 <c>0.0</c>
 </row>
</object>

The INDEX clause of the tcpConnTable (TCP-MIB RFC 4022) has four
sub-index values with base type IpAddress, INTEGER, IpAddress,
and INTEGER:

 <object name="tcpConnTable" module="TCP-MIB"
 oid="1.3.6.1.2.1.6.13.1">
 <row index="0.0.0.0.161.0.0.0.0.0">
 <i>0.0.0.0</i>
 <i>161</i>
 <i>0.0.0.0</i>
 <i>0</i>
 <c>0</c>
 <c>0.0.0.0</c>
 <c>0</c>
 <c>0.0.0.0</c>
 <c>0</c>
 </row>
</object>

Exporting Simulation Data
When the simulation agent is running, its complete simulation data
content can be exported as a XML file by using the Save Data... button on
the Agent tab.

AGENPRO USER GUIDE
Simulation Agent 65

9.1.4 Simulation Agent Configuration with SNMP

Another way to configure the simulation agent is SNMP. Using SNMP
has the advantage that a standard protocol is used that (to some extend)
can be reused when developing the real agent generated by AgenPro.
The simulation agent has two modes: operation and config:

 The operation mode is the default mode after startup. In this mode, the
agent behaves as any other SNMP agent.

 The config mode can be used to modify (create and update) simulated
MIB objects regardless of their maximum access level defined by their
MIB specifications. Although the maximum access level is ignored in
this mode, security (VACM) still applies.

To change the agent‘s mode, set the MIB object agentppSimMode with
OID 1.3.6.1.4.1.4976.2.1.1.0 to 1 (operation) or 2 (config).
Independently of the current mode, the objects
agentppSimDeleteRow and agentppSimDeleteTableContents
can be used to delete individual rows or all rows of a table.
To delete the row with index 100 of the ifTable, use the OID of an
arbitrary object instance of that row, for example the ifDescr column:

SET 1.3.6.1.4.1.4976.2.1.2.0=1.3.6.1.2.1.2.2.1.2.100

To delete all rows of the ifTable table use the OID of the corresponding
conceptual row object which is the ifEntry object:

SET 1.3.6.1.4.1.4976.2.1.3=1.3.6.1.2.1.2.2.1

9.2 Running a Simulation Agent
To run a simulation agent only a set of supported MIB modules need to
be configured by setting up a code generation project using the “Accessing
the Project Wizard” on page 15. Then simply press the Start button on the
Agent tab and the simulation agent is started to listen on all local IP
addresses on port 161, the default SNMP port for command responder
applications.

To bind all local addresses, the
special IP address 0.0.0.0 is
used.

If the simulation agent start fails, a popup is displayed with an error
message and the root cause is displayed in the Log tab. In most cases,
startup failures are caused by address or port conflicts or because on UNIX
systems AgenPro does not have enough privileges to bind a port below
1024.

AGENPRO USER GUIDE
Running a Simulation Agent66

The running agent can be configured using standard SNMP means. The
Table 6 on page 66 lists the MIB modules that are supported at minimum,
that is, if no MIB modules for code generation have been configured for
the current project. To initially access the agent you will need the security
settings listed in the next section

MIB Module Name Description

SNMPv2-MIB Contains general information about the agent.

SNMP-VIEW-BASED-
ACM-MIB

Controls the view access control model (VACM) of the agent. The VACM
controls which user/community has access to which contexts and MIB tree
subsets.

SNMP-USER-BASED-
SM-MIB

Controls the (SNMPv3) users and their authentication and privacy
settings. SNMPv1/v2c communities are mapped to users. See also SNMP-
COMMUNITY-MIB.

SNMP-COMMUNITY-
MIB

The SNMP-COMMUNITY-MIB maps communities (v1 or v2c) to
SNMPv3 security names (users). With that mapping, the VACM can be
applied to community based SNMP version too.

SNMP4J-LOG-MIB Controls the log levels for the simulation agent.

SNMP-TLS-TM-MIB Maps certificates to SNMPv3 security names. To enable TLS support, you
need to add a row to the snmpTlstmCertToTSNTable which maps a
certificate to the TLSPRIV user name. Certificates can provided to the Java
runtime with the -Djavax.net.ssl.trustStore and the
-Djavax.net.ssl.trustStorePassword options.

SNMP4J-CONFIG-MIB Manages the persistent storage of the agent‘s MIB data. By default,
AgenPro uses the AgenProSim.cfg and the AgenProSim.bc to store
its MIB data and boot counter respectively. Both files are stored in the
user‘s home directory who is running AgenPro.

AGENTPP-
SIMULATION-MIB

With the simulation MIB all simulated MIB objects can be modified
through SNMP. The agentppSimMode MIB object can be used to put
the agent from the default mode operation into the config mode. In config
mode, all MIB objects, regardless of their MAX-ACCESS limit, can be
modified with a SNMP SET operation (as long as VACM provides access
to the object itself).
For more details, see “Simulation Agent Configuration with SNMP” on
page 65

Table 6: The MIB modules always supported by the AgenPro simulation agent.

AGENPRO USER GUIDE
Simulation Agent 67

Security Credentials for SNMP Access
To be able to access the agent through SNMP, use one of the protocol
version and community or security name, protocol, and passphrases
combinations list by Table 7 on page 67:

9.3 Sending a Simulated Notification
Before a simulated notification can be sent, the following prerequisites
have to be met:

1. The traps property has to be specified for the NOTIFICATION-
TYPE to sent with at least one name.

2. Optionally, for each columnar OBJECT-TYPE of the NOTIFICA-
TION-TYPE‘s OBJECTS clause, define the row index reference by a
object property.

3. Configure notification targets for the simulation agent by customizing
the “Simulation Agent Configuration” on page 54. Alternatively, the
target configuration can also be changed using SNMP and the SNMP-
TARGET-MIB as well as the SNMP-NOTIFICATION-MIB.

4. Start the simulation agent using the Start button on the Agent tab.

COMMUNITY/
SECURITY NAME

VER

SION

AUTH.
PROTO.

AUTH.
PASSPHRASE

PRIVACY

PROTO.
PRIVACY
PASSPHRASE

public v1 n/a n/a n/a n/a

public v2c n/a n/a n/a n/a

unsec v3 - - - -

MD5 v3 MD5 MD5AuthPP - -

MD5DES v3 MD5 MD5DESAuthPP DES MD5DESPrivPP

SHA v3 SHA SHAAuthPP - -

SHADES v3 SHA SHADESAuthPP DES SHADESPrivPP

SHAAES128 v3 SHA SHAAES128AuthPP AES128 SHAAES128PrivPP

SHA256AES128 v3 SHA256 SHA256AES128AuthPP AES128 SHA256AES128PrivPP

SHA512AES256 v3 SHA512 SHA512AES256AuthPP AES256 SHA512AES256PrivPP

TLSPRIV v3 n/a n/a n/a n/a

Table 7: Initial (default) security credentials of the AgenPro simulation agent.

AGENPRO USER GUIDE
Sending a Simulated Notification68

5. Now the Send Notification list should contain all the trap template
names that have been specified by one or more traps properties.
Select the template you want to generate a trap for and press the Send
Notification button.

The referenced MIB object
instances are subject to the View
Access Control Model (VACM) of
the agent. Thus, the agent checks
if the object instances are
accessible for notify.

6. If all columnar object references have been specified beforehand, the
trap is generated by using the values of the referenced MIB object
instances and is then sent to all configured targets. For any reference
that are not provided, a message dialog asks for selecting it from con-
figured row indexes for that columnar object. If no such row indexes
are specified, the notification cannot be sent.

AGENPRO USER GUIDE
MIB File Editor 69

10 MIB File Editor

The MIB file editor has the usual capabilities of a text editor including
printing, undo and redo. The status bar displays row and column position
of cursor. The text pane below the tool bar displays error messages from
the integrated MIB compiler.
The error stripe right of the editor indicates where errors are located in the
file. The red stripes can be clicked to quickly move the editor‘s cursor to
that error location.

10.1 Save, Compile, and Load a MIB File at Once
By choosing Import MIB from the editor's File menu the edited file is
saved, compiled, and loaded into the MIB tree. If compilation fails, then
the edited MIB module(s) will not be imported into AgenPro. Instead an
error text will be displayed in the text area below the editor's tool bar. On
successful compilation, the MIB module(s) will be stored in the MIB
Repository and loaded. At the same time the editor window will be closed.

10.2 Search and Replace Function
A powerful way to make modifications to a MIB file is searching and
replacing by regular expressions.

To quickly search forth and back
using sub-string or a regular
expression by full text search, use
the search control in the toolbar.

To search a MIB file by a regular expression, choose Find from the Edit
menu. Enter the expression to search for in the opened dialog. The combo
box will remember ten expressions used last.
To search and replace found matches, choose Replace from the Edit
menu. Enter the search expression and the substitution expression and
press OK. A matched region in the MIB file will be selected and a
confirmation dialog will be shown. Each substitution can be confirmed
individually or all substitutions can be confirmed at once.
The substitution string may contain variable interpolations referring to the
saved parenthesized groups of the search pattern. A variable interpolation
is denoted by $1, or $2, or $3, etc. It is easiest to explain what an
interpolated variable does by giving an example:
Suppose you have the pattern b\d+: and you want to substitute the b's
for a's and the colon for a dash in parts of your input matching the pattern.
You can do this by changing the pattern to b(\d+): and using the
substitution expression a$1-. When a substitution is made, the $1 means

AGENPRO USER GUIDE
Regular Expression Syntax70

„Substitute whatever was matched by the first saved group of the matching
pattern“. An input of b123: after substitution would yield a result of
a123-.

10.3 Regular Expression Syntax
A regular expression (or RE) specifies a set of strings that matches it. Thus,
a regular expression can be used to check whether an input string is
matched by that expression.

For details of the theory and
implementation of regular
expressions you may consult the
following Internet site http://py-
howto.sourceforge.net/regex/
regex.html

Regular expressions can be concatenated to form new regular expressions;
if A and B are both regular expressions, then AB is also a regular expression.
If a string p matches A and another string q matches B, the string pq will
match AB. Thus, complex expressions can easily be constructed from
simpler primitive expressions like the ones described here.

A brief explanation of the format of regular expressions borrowed from the
Python Library Reference follows.
Regular expressions can contain both special and ordinary characters. Most
ordinary characters, like A, a, or 0, are the simplest regular expressions;
they simply match themselves. You can concatenate ordinary characters, so
last matches the string 'last'. (In the rest of this section, we will write
RE's in this special style, usually without quotes, and strings to be matched
'in single quotes'.
Some characters, like "|" or "(", are special. Special characters either stand
for classes of ordinary characters, or affect how the regular expressions
around them are interpreted.

The special characters are shown by Table 8 on page 70:.

EXPRESSION DESCRIPTION

. (Dot.) In the default mode, this matches any character
except a newline. If the DOTALL flag has been
specified, this matches any character including a
newline.

^ (Caret.) Matches the start of the string, and in
MULTILINE mode also matches immediately after
each newline.

$ Matches the end of the string and in MULTILINE
mode also matches before a newline. foo matches
both 'foo' and 'foobar', while the regular
expression foo$ matches only 'foo'.

Table 8: Regular expression syntax characters with special meaning.

http://py-howto.sourceforge.net/regex/regex.html

AGENPRO USER GUIDE
MIB File Editor 71

* Causes the resulting RE to match 0 or more
repetitions of the preceding RE, as many repetitions as
are possible. ab* will match 'a', 'ab', or 'a' followed
by any number of 'b' s.

+ Causes the resulting RE to match 1 or more
repetitions of the preceding RE. ab+ will match 'a'
followed by any non-zero number of 'b's; it will not
match just 'a'.

? Causes the resulting RE to match 0 or 1 repetitions of
the preceding RE. ab? will match either 'a' or 'ab'.

*?,+?,?? The *, +, and ? qualifiers are all greedy; they match as
much text as possible. Sometimes this behavior is not
desired; if the RE <.*> is matched against
'<H1>title</H1>', it will match the entire string,
and not just '<H1>'. Adding ? after the qualifier
makes it perform the match in non-greedy or minimal
fashion; as few characters as possible will be matched.
Using .*? in the previous expression will match only
'<H1>'.

{m,n} Causes the resulting RE to match from m to n
repetitions of the preceding RE, attempting to match
as many repetitions as possible. For example, a{3,5}
will match from 3 to 5 a characters. Omitting n
specifies an infinite upper bound; you can't omit m.

{m,n}? Causes the resulting RE to match from m to n
repetitions of the preceding RE, attempting to match
as few repetitions as possible. This is the non-greedy
version of the previous qualifier. For example, on the
6-character string 'aaaaaa', a{3,5} will match 5 a
characters, while a{3,5}? will only match 3
characters.

\ Either escapes special characters (permitting you to
match characters like *, ?, and so forth), or signals a
special sequence; special sequences are discussed
below.

EXPRESSION DESCRIPTION

Table 8: Regular expression syntax characters with special meaning.

AGENPRO USER GUIDE
Regular Expression Syntax72

[] Used to indicate a set of characters. Characters can be
listed individually, or a range of characters can be
indicated by giving two characters and separating
them by a "-". Special characters are not active inside
sets. For example, [akm$] will match any of the
characters "a", "k", "m", or "$"; [a-z] will match
any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S
(defined below) are also acceptable inside a range. If
you want to include a "]" or a "-" inside a set,
precede it with a backslash, or place it as the first
character. The pattern []] will match ']', for
example.
You can match the characters not within a range by
complementing the set. This is indicated by including a
"^" as the first character of the set; "^" elsewhere will
simply match the "^" character. For example, [^5]
will match any character except "5".

| A|B, where A and B can be arbitrary REs, creates a
regular expression that will match either A or B. This
can be used inside groups (see below) as well. To
match a literal "|", use \|, or enclose it inside a
character class, as in [|].

(...) Matches whatever regular expression is inside the
parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a
match has been performed (for example in a
substitution expression), and can be matched later in
the string with the \number special sequence,
described below. To match the literals "(" or "')", use
\(or \), or enclose them inside a character class:
[(] [)].

EXPRESSION DESCRIPTION

Table 8: Regular expression syntax characters with special meaning.

AGENPRO USER GUIDE
MIB File Editor 73

(?...) This is an extension notation (a "?" following a "(" is
not meaningful otherwise). The first character after
the "?" determines what the meaning and further
syntax of the construct is. Extensions usually do not
create a new group; (?P<name>>...) is the only
exception to this rule. Following are the currently
supported extensions.

(?imsx) (One or more letters from the set "i", "L", "m", "s",
"x".) The group matches the empty string; the letters
set the corresponding flags for the entire regular
expression:
i - Do case-insensitive pattern matching.
m - Treat string as multiple lines. That is, change "^"
and "$" from matching the start or end of the string
to matching the start or end of any line anywhere
within the string.
s - Treat string as single line. That is, change "." to
match any character whatsoever, even a newline,
which normally it would not match.

The /s and /m modifiers both override the $*
setting. That is, no matter what $* contains, /s
without /m will force "^" to match only at the
beginning of the string and "$" to match only at the
end (or just before a newline at the end) of the string.
Together, as /ms, they let the "." match any character
whatsoever, while yet allowing "^" and "$" to match,
respectively, just after and just before newlines within
the string.
Extend your pattern's legibility by permitting
whitespace and comments.

(?:...) A non-grouping version of regular parentheses.
Matches whatever regular expression is inside the
parentheses, but the substring matched by the group
cannot be retrieved after performing a match or
referenced later in the pattern.

(?#...) A comment; the contents of the parentheses are
simply ignored.

EXPRESSION DESCRIPTION

Table 8: Regular expression syntax characters with special meaning.

AGENPRO USER GUIDE
Regular Expression Syntax74

(?=...) Matches if ... matches next, but doesn't consume
any of the string. This is called a look-ahead assertion.
For example, Isaac(?=Asimov) will match
'Isaac' only if it's followed by 'Asimov'.

(?!...) Matches if ... does not match next. This is a
negative look-ahead assertion. For example, Isaac
(?!Asimov) will match 'Isaac' only if it's not
followed by 'Asimov'.

EXPRESSION DESCRIPTION

Table 8: Regular expression syntax characters with special meaning.

AGENPRO USER GUIDE
Logging 75

11 Logging

AgenPro provides a highly configurable and well known logging
mechanism, called Log4J from Apache. By default logging is enabled.
Logging can be disabled or enabled by using the Log panel of AgenPro's
user interface (see below). Logged events are shown in the logging area of
the Log panel. They can be exported to a text file using the Save As
button.

11.1 Configuration
1. Select the Log tab from the tools panel.

2. Press the Properties button. The logging properties window will be
displayed.

3. Enter the maximum number of log records to be held by AgenPro in
the log table. Zero will disable logging.

4. Browse through the event tree and assign priorities other than FATAL
to the events you want to monitor. Assigning FATAL to the root prior-
ity will disable logging for all subtrees in the event hierarchy that do
not override that priority.

5. Press Save to save the settings. The logging properties will be restored
when AgenPro is started for the next time.

AGENPRO USER GUIDE
Tools76

12 Tools

Useful tools and tool settings are available from AgenPro’s Tools menu.

12.1 Identifying Duplicate OIDs
It could be problematic and it is not desirable for the code generation if an
object identifier (OID) is not unique within the set of generated MIB
objects. To avoid such a situation, AgenPro can list the duplicate OIDs of
the loaded MIB modules in a table. From the Tools menu, choose
Duplicate OIDs to open this list.

12.2 Extract SMI Modules from RFC Documents
SMI MIB module definitions are embedded in IETF RFC documents
which also includes page headers within the module text. This extraction
tool can read a RFC file or a directory of RFC files to extract any embedded
SMI modules and save them into new files.

To Extract SMI Modules from RFCs:
1. Choose Extract SMI from RFC from the Tools menu.

2. Choose a source file or a source directory.

If two directories are specified,
then the target file name is build
from the source file name by
appending „.smi“. If such a file
exists already, then „-<n>.smi“ is
appended where <n> is counted
up from 1 to 999 until such a file
does not exists.

3. Choose a target file if you have chosen a source file or choose a target
directory if have chosen a source directory.

4. Press the Ok button to run the extraction. A progress dialog will open
where you can also cancel the operation if more than one file is being
processed.

12.3 Code Formatters
As of version 5.0, for each code generation job in the Project Wizard (“Job
Configuration” on page 28), a code formatter can be specified. Because the
formatter is rather source code type related than job specific, you can
define the code formatters available for configuration under Tools>Code
Formatters.
There is a Java code formatter built-in. Other code formatters could to be
installed in addition to AgenPro on the operating system. AgenPro will
pipe the generated code to stdin of the started code formatter process and
expects the formatted code byte stream on stdout.

AGENPRO USER GUIDE
Tools 77

 To add a code formatter definition:

Enter the name in the topmost field an d the command line to be exe-
cuted by AgenPro in the text area below.

 To save the edited code formatter configuration:

Press Add. The new configuration will then be saved to the list of
known code formatters. If an configuration with the same name
already exists, it will be overwritten (updated).

 To remove a code formatter:

Select the code formatter name to be removed in the list and then press
Delete.

To save your changes press OK. Cancel discards all changes made to the
code formatter list.

Figure 7: Example code formatter configuration for C++ files with clang-format installed on MacOS/Linux)

AGENPRO USER GUIDE
Other Tools (not from the Tools Menu)78

Note: Code formatters with the
suffix [built-in] cannot be
modified nor deleted.

If a code formatter is deleted that is still referenced by a code generation
job, then the code formatting for this job will fail and no code formatting
will take place, but the generated output will be written though.

12.4 Other Tools (not from the Tools Menu)

12.4.1 Searching the MIB Tree

AgenPro's MIB Tree can be searched by regular expressions. A node whose
properties or attributes matches the given regular expression will be
selected. With the Find Again menu item or button you are then able
to find the next node that matches the expression.

To Find a Node:

1. Choose Find from the Edit menu or press from the main tool bar.
The search dialog will be displayed.

2. Enter the search expression in regular expression syntax.

3. Select whether case should ignored or not. If selected, this will insert
"(?i)" at the beginning of the used search expression.

4. Select what type of attributes of a node you want to be matched
against the search expression. Choosing All will match the whole SMI
text of a MIB object node, including key words, or the properties ren-
dered as "key=value" node against the given search expression.

To Find a Node Again:
Choose Find Again from the Edit menu or press from the main tool
bar. The next node in depth first search order from the currently selected
node will be searched, that matches the previously specified search
expression and options.

12.4.2 Exporting MIB Modules

MIBs can be exported from the current MIB repository to plain text and
HTML files.

To Export MIBs:

1. Choose Export MIBs from the File menu.

2. Choose the file format for the exported MIB modules.

3. Select the MIBs to export from the list of available modules and press
the Add button to add them to the list of modules to be exported.

AGENPRO USER GUIDE
Tools 79

Note: Any files existing in the
destination directory might be
overwritten!

4. Choose the destination directory.

5. Press OK to start the export operation. Each MIB module will be
exported to a file, whose name will be the MIB modules name concat-
enated with one of the suffixes .txt or .html.

AGENPRO USER GUIDE
Trouble Shooting80

13 Trouble Shooting

The AgenPro FAQ provides additional information and solutions that are
beyond the scope of this manual. The FAQ can be found at:

https://doc.snmp.app/display/TOOLS/AgenPro

Please send questions that are not covered by the FAQ or this manual to
support@agentpp.com.

AGENPRO USER GUIDE
MIB Compiler Error Messages 81

14 MIB Compiler Error Messages

ERROR # MESSAGE DESCRIPTION/SOLUTION

0000 File open error: <X>. The file <X> could not be read, please check
access rights.

0010 The length of identifier <X> exceeds 64
characters (RFC 2578 §3.1, §7.1.1,
§7.1.4).

It is recommended to use only identifiers with a
length of less than 32 characters for
interoperability issues. Identifiers that exceed 64
characters in length must be avoided.

0050 Encountered lexical error at … The encountered character is not allowed in a
SMI MIB module.

1000 Syntax error: Encountered „token1“ at
row r, column c, expected one of the
following: ...

The parser encountered a string it did not
expect. Please look at the list of expected tokens
carefully in order to determine the trouble cause.
If the parser complains about a SMIv2 keyword
like MAX-ACCESS, please check whether the
first statement after the IMPORTS clause is a
MODULE-IDENTITY definition. This is a
requirement for a SMIv2 MIB module
(RFC2578 §3).

1001 The DISPLAY-HINT clause value
„token1“ at row r, column c is
invalid (RFC 2579 §3.1).

The DISPLAY-HINT clause does not
correspond to any of the allowed formats for
INTEGER or OCTET STRING base types.

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages82

1002 The UTC time value “token1” at row r,
column c does not match the mandatory
format YYMMDDhhmmZ or
YYYYMMDDhhmmZ (RFC 2578 §2)

The UTC time value does not correspond to the
format YYMMDDhhmmZ or YYYYMMDDhhmmZ
where
YY - last two digits of year (1900-1999 only)
YYYY - last four digits of the year (any year)
MM - month (01 through 12)
DD - day of month (01 through 31)
hh - hours (00 through 23)
mm - minutes (00 through 59)
Z - denotes GMT (the ASCII character Z)

1020 Identifier <X> is ambiguous (RFC 2578
§3.1).

The identifiers (descriptors) in a MIB module
must be unique.

1050 The clause <X> is not allowed within
this context.

There are several clauses in SMI that are
optional, but if specified those clauses need to be
consistent with other clauses in the object
definition. Examples for such clauses are the
ACCESS, MIN-ACCESS, and SYNTAX clauses
in MODULE-COMPLIANCE constructs,
which must not be present for variations of
NOTIFICATION-TYPEs.

1100 Imported MIB module <X> unknown. The MIB module <X> could not be found in the
MIB repository and neither in the MIB modules
being compiled. Make sure that the MIB
module name is not misspelled (this is often the
case for older SMIv1 MIBs).

1101 Imported MIB module <X> contains a
circular import.

The MIB module <X> imports from a module
that either imports itself from <X> or any other
module in the import chain imports from a
preceding module.

1102 MIB module <X> is imported more
than once.

The ASN.1 rules about IMPORTS that SMI is
based on require that an import source is defined
not more than once in a module.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages 83

1110 <X> imported from MIB module <Y>
must be imported from <Z> instead.

For historical reasons, SMI requires to import
the MACRO definitions SMI is based on from
some ASN.1 modules. For SMIv1 and SMIv2 it
is defined which MACRO (construct) is
imported from which ASN.1 module. Since
those ASN.1 modules (e.g. SNMPv2-SMI) are
not SMI themselves, the MACRO definitions
have to be removed in order to be able to
compile them.

1111 Missing import statement for <X> (RFC
2578 §3.2).

To reference an external object, the IMPORTS
statement must be used to identify both the
descriptor and the module in which the
descriptor is defined, where the module is
identified by its ASN.1 module name.

1112 Imported object <X> is not defined in
MIB module <Y>.

Use the Edit>Search MIB Repository to search
for the MIB module that defines <X>.

1113 Object <X> is imported twice from MIB
module <Y>.

An object definition shall only be imported once
from a MIB module.

1114 <X> cannot be imported (RFC 2578
§3.2).

Notification and trap type definitions as well as
SEQUENCE constructs cannot be imported by
other MIB modules.

1150 Wrong module order within file. The MIB file that failed to compile contains
more than one MIB module and the order of
those MIB modules does not correspond with
their import dependencies.

1200 The SYNTAX clause of the columnar
OBJECT-TYPE definition <X> does
not match with the SYNTAX clause of
the corresponding SEQUENCE
definition.

The object <X>’s syntax differs in a
SEQUENCE definition from its OBJECT-
TYPE definition.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages84

1202 The OBJECT-TYPE <X> has
inconsistent maximum access (RFC
2578 §7.3).

An object <X> has a MAX-ACCESS or
ACCESS clause that does not match its context
(RFC 2578 §7.3). For example, a columnar
object must not have a MAX-ACCESS value of
“read-write” if any other columnar object in the
table has a MAX-ACCESS value of “read-
create”.

1210 The conditionally GROUP clause <X>
must be absent from the corresponding
MANDATORY-GROUPS clause (RFC
2580 §5.4.2).

A conditionally group cannot be mandatory at
the same time!

1211 OBJECT variation <X> must be
included in a GROUP or
MANDATORY-GROUPs reference
(RFC 2580 §5.4.2).

The object reference <X> must be part of any
object group specified as conditionally or
mandatory for this compliance module.

1212 Only ‘not-implemented’ is applicable for
the ACCESS clause of the notification
type variation <X> (RFC 2580
§6.5.2.3).

If the notification has to be implemented, then
the ACCESS clause should be removed.

1220 The CREATION-REQUIRES clause of
variation <X> must only be present for
conceptual row definitions (RFC 2580
§6.5.2.4).

The CREATION-REQUIRES clause must not
be present unless the object named in the
correspondent VARIATION clause is a
conceptual row, i.e., has a syntax which resolves
to a SEQUENCE containing columnar objects.

1221 Only columnar object type definitions
with ‚read-create‘ access may be present
in the CREATION REQUIRES clause
of variation <X> (RFC 2580 §6.5.2.4).

Other objects and columns cannot be created
and thus they cannot participate in a row
creation.

1500 Undefined syntax(es): <X>[,…] The syntax (data type) <X> is not defined in the
parsed MIB module and it is not imported from
another MIB module. Use the Edit>Search MIB
Repository function to search the MIB
repository for object name <X> and add the
corresponding IMPORT FROM clause for <X>.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages 85

1501 Undefined object(s): <X>[,…] The object name <X> is not defined in the
parsed MIB module and it is not imported from
another MIB module. Use the Edit>Search MIB
Repository function to search the MIB
repository for object name <X> and add the
corresponding IMPORT FROM clause for <X>.

1502 The object <X> must be defined or
imported (RFC 2578 §3.2).

The object <X> is not defined in the parsed MIB
module and it is not imported from another
MIB module. Use the Edit>Search MIB
Repository function to search the MIB
repository for object name <X> and add the
corresponding IMPORT FROM clause for <X>.

1600 The object definition <X> references a
<Y> definition, expected a reference to
an OBJECT-TYPE conceptual row
definition instead.

The AUGMENTS clause, for example, requires
that the referenced object definition is a
conceptual table definition, i.e., has a syntax
which resolves to a SEQUENCE containing
columnar objects.

1601 The GROUP clause <X> references a
<Y> definition, expected a reference to
an OBJECT-GROUP or
NOTIFICATION-GROUP instead
(RFC 2580 §5.4.2).

The GROUP clause requires a reference to an
object group definition.

1602 The object reference <X> points to a
<Y> definition, expected a reference to
an OBJECT-TYPE or
NOTIFICATION-TYPE definition
instead.

The VARIATION clause, for example, requires a
reference to an OBJECT-TYPE or a
NOTIFICATION-TYPE definition.

1700 Object reference(s) with wrong type:
<X> (expected <Y> but found <Z>)
[,…]

The referenced to object <X> must be of type
<Y> but it is of type <Z>.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages86

1800 The SEQUENCE clause of the table
entry definition <X> does not match the
order or number of objects registered for
that table at entry <Y>.

The column references in the SEQUENCE
definition of a table must be lexicographically
ordered by their object-identifiers. The object
name Y is the name of the first object reference
in the SEQUENCE definition that does not
match the order of columnar objects of that
table.

1810 The OBJECT-TYPE <X> has an invalid
index definition (RFC 2578 §7.7).

The OBJECT-TYPE <X> has an invalid INDEX
clause, i.e., an empty clause.

1811 The OBJECT-TYPE <X> has invalid
index definition because <Y> may be
negative (RFC 2578 §7.7).

Index values have to be encoded as OID suffixes
on the wire. Since OID sub-identifiers are 32-bit
unsigned integer values, negative values cannot
be encoded over the wire. See RFC 2578 §7.7
for more details.

1850 The OBJECT-TYPE <X> has invalid
index definition, because <Y> is not a
columnar object (RFC 2578 §7.7).

The OBJECT-TYPE <X> has an invalid INDEX
clause, because <Y> does not refer to a columnar
OBJECT-TYPE definition. An OBJECT-TYPE
is columnar object, if it is part of a table
definition. See RFC2578 §7.7 for more details.

1851 OBJECT-TYPE definition <X> is a
scalar and therefore it must not have an
INDEX clause (RFC 2578 §7.7).

Scalar objects have a fixed instance identifier
(“index”) of ‘0’, thus an INDEX clause must not
be specified.

2000 Duplicate object registration of <X>
after <Y> for the object ID <Z> (RFC
2578 §3.6).

Once an object identifier has been registered* it
must not be re-registered.

2010 Illegal object registration of <X> under
<Y> for the object ID <Z>.

For example, it is not legal to register objects in
the sub-tree of an OBJECT-TYPE registration.

3000 The default value of OBJECT-TYPE
<X> is out of range (RFC 2578 §7.9).

The values specified in a DEFVAL clause have to
be valid values for the corresponding data type
syntax.

3001 The size of the default value of
OBJECT-TYPE <X> is out of range
(RFC 2578 §7.9).

The length of the specified octet string exceeds
the SIZE constraints defined for the
corresponding data type syntax.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages 87

3002 The format of the default value of
OBJECT-TYPE <X> does not match its
syntax (RFC 2578 §7.9).

The value <X> is not properly defined for the
corresponding syntax.

3003 A DEFVAL clause is not allowed for
OBJECT-TYPE <X> which has a base
syntax of Counter (Counter32 or
Counter64) (RFC 2578 §7.9).

4000 The syntax definition of the object <X>
is not a valid refinement of its base
syntax (RFC 2578 §9).

A refinement must not extend the range of valid
values for a data type.

4010 The range restriction is invalid because
…

The lower bound (first value) of range restriction
must be less or equal than the corresponding
upper bound (second value). In addition,
bounds for unsigned values cannot be negative.

4100 The TEXTUAL-CONVENTION
definition <X> must not have a
DISPLAY-HINT clause because its
SYNTAX is OBJECT IDENTIFIER,
IpAddress, Counter32, Counter64, or
any enumerated syntax (BITS or
INTEGER) (RFC 2579 §3.1)

Only textual conventions for INTEGER and
OCTET STRING base types may have a
DISPLAY-HINT clause.

4101 The DISPLAY-HINT clause value
„token1“ of the TEXTUAL-
CONVENTION definition <X> is not
compatible with the used SYNTAX
(RFC 2579 §3.1)

The integer DISPLAY-HINT format must be
used with the INTEGER base type only whereas
the string DISPLAY-HINT format must be used
with OCTET STRING base type only.

5000 The object definition <X> must be
included in an OBJECT-GROUP or a
NOTIFICATION-GROUP definition
respectively (RFC 2580 §3.1 and §4.1).

This requirement ensures that compliance
statements for a MIB module can be written.

5100 Object group <X> must not reference
OBJECT-TYPE <Y> which has a MAX-
ACCESS clause of not-accessible (RFC
2580 §3.1).

Only accessible objects and notifications may be
included in object groups.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages88

5101 The OBJECTS clause of
NOTIFICATION-TYPE <X> must not
reference OBJECT-TYPE <Y> which
has a MAX-ACCESS clause of 'not-
accessible' (RFC2578 §8.1)"

It is impossible for an agent to implement View
Access Control Model (VACM) correctly and
sending an object which has a maximum access
of ‘not-accessible’.

6000 The PIB-INDEX clause of OBJECT-
TYPE definition <X> does not reference
a columnar object with an
'InstanceId' syntax (RFC3159 §7.5)

Check the reference and either change the syntax
of the referenced object to InstanceId or
remove the PIB-INDEX clause.

6001 The PIB-TAG clause present in <X>
must be absent because the SYNTAX is
not 'TagReferenceId' (RFC3159
§7.11)

The PIB-TAG clause can only be used in
conjunction with the TagReferenceId
syntax.

6002 The PIB-REFERENCES clause present
in <X> must be absent because the
SYNTAX is not 'ReferenceId'
(RFC3159 §7.10)

Remove the PIB-REFERENCE clause.

6003 A PIB-TAG clause must be present in
<X> because its SYNTAX is
'TagReferenceId' (RFC3159 §7.11)

Add a PIG-TAG clause.

6004 The PIB-REFERENCES must be
present in <X> because its SYNTAX is
'ReferenceId' (RFC3159 §7.10)

Add a PIB-REFERENCES clause.

6005 The UNIQUENESS clause of
OBJECT-TYPE definition <X> must
not contain the attribute <Y> referenced
in the PIB-INDEX clause (RFC3159
§7.9)

PIB-INDEX clause already identifies an unique
attribute, therefore it must not be redundantly
defined in the UNIQUENESS clause.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages 89

6006 The UNIQUENESS clause of
OBJECT-TYPE definition <X> must
not contain the attribute <Y> more than
once (RFC3159 §7.9)

Remove the duplicate attribute from the
UNIQUENESS clause.

6007 The INSTALL-ERRORS clause of
OBJECT-TYPE definition <X> has an
invalid error number <N> for label <L>
which is out of the range 0-65535
(RFC3159 §7.4)

Change the error number to be in the allowed
range of 0-65535.

*. An object registration is any object definition other than OBJECT-IDENTIFIER.

ERROR # MESSAGE DESCRIPTION/SOLUTION

Table 9: AgenPro SMI compiler error messages.

AGENPRO USER GUIDE
MIB Compiler Error Messages90

	1 AgenPro Manual Overview
	2 System Requirements
	3 Setup
	3.1 Installation
	3.2 Using Native Installer
	3.3 Other Platforms
	3.4 Starting AgenPro
	3.5 Updates and Upgrades
	3.6 Uninstall
	3.7 Setup
	3.7.1 Install Templates, Example Projects, and MIBs

	3.8 Upgrade
	3.8.1 Upgrade Templates to AgenPro v4.0
	3.8.2 Upgrade Templates to AgenPro v4.2

	4 Preferences
	4.1 Persistence
	4.2 View
	4.3 General
	4.4 Internet Proxy

	5 MIB Repository
	6 MIBs
	6.1 Getting MIB Files
	6.2 Compiling MIBs
	6.2.1 Compiler Log

	6.3 Loading MIB Modules
	6.4 Deleting MIB Modules

	7 Projects
	7.1 Accessing the Project Wizard
	7.2 Managing Projects
	7.3 Properties
	7.3.1 Properties Tab
	7.3.2 AGENT++ Code Generation Properties
	7.3.3 SNMP4J-Agent Code Generation Properties
	7.3.4 The Code Generated for SNMP4J-Agent

	7.4 Project Wizard
	7.4.1 Job Configuration
	7.4.2 Job Properties
	7.4.3 User Code ID Mappings
	7.4.4 AGENT-CAPABILITIES Selection
	7.4.5 MIB Module Selection

	8 Code Generation
	8.1 Code Generation Benefits with AgenPro & AGENT++
	8.2 Code Generation Benefits with AgenPro & SNMP4J-Agent
	8.3 Code Generation Prerequisites
	8.4 Running Code Generation Jobs
	8.5 How Jobs are Processed
	8.6 Customizing Code Generation
	8.6.1 Code Protection

	8.7 Code Preview and Mapping
	8.7.1 Map Protected Code
	8.7.2 Write or Export Preview Code

	8.8 AgenPro Maven Plugin
	8.8.1 Upgrade From AgenPro Maven Plugin Version 3
	8.8.2 Maven Plugin Installation
	8.8.3 Using the AgenPro Maven Plugin

	9 Simulation Agent
	9.1 Simulation Agent Configuration
	9.1.1 Simulation Properties
	9.1.2 Agent Data
	9.1.3 Simulation Data
	9.1.4 Simulation Agent Configuration with SNMP

	9.2 Running a Simulation Agent
	9.3 Sending a Simulated Notification

	10 MIB File Editor
	10.1 Save, Compile, and Load a MIB File at Once
	10.2 Search and Replace Function
	10.3 Regular Expression Syntax

	11 Logging
	11.1 Configuration

	12 Tools
	12.1 Identifying Duplicate OIDs
	12.2 Extract SMI Modules from RFC Documents
	12.3 Code Formatters
	12.4 Other Tools (not from the Tools Menu)
	12.4.1 Searching the MIB Tree
	12.4.2 Exporting MIB Modules

	13 Trouble Shooting
	14 MIB Compiler Error Messages

