
1

MIB Designer 5.2

A Java SE Application
for Visual MIB Design and Editing

of SMIv1/v2 MIB Modules
and SPPI PIB Modules

Copyright © 2001-2025, Frank Fock. All rights reserved.



2



i

1 System Requirements .................................................................................. 1
2 Installation .................................................................................................. 2
2.1 Using Native Installer .................................................................................. 2
2.2 Other Platforms .......................................................................................... 2
2.3 Starting MIB Designer ................................................................................ 3
2.4 Updates and Upgrades ................................................................................. 3
2.5 Uninstall ..................................................................................................... 3
3 What Is MIB Designer? ............................................................................... 5
4 Setup ........................................................................................................... 7
4.1 Selecting a MIB Repository ......................................................................... 7
4.2 Compiling MIB Files .................................................................................. 7
4.3 Deleting MIB Modules ............................................................................... 10
5 Using MIB Designer ................................................................................... 12
5.1 Creating a New MIB ................................................................................... 13
5.1.1 New MIB Wizard ...................................................................................... 14
5.2 Editing a MIB ............................................................................................. 17
5.2.1 Import ....................................................................................................... 17
5.2.2 Add ........................................................................................................... 18
5.2.3 Copy ......................................................................................................... 18
5.2.4 Cut ............................................................................................................ 19
5.2.5 Paste .......................................................................................................... 19
5.2.6 Edit ........................................................................................................... 20
5.2.7 ASN.1 Comments ..................................................................................... 20
5.2.8 Moving Objects ......................................................................................... 21
5.2.9 Renumbering Objects ................................................................................ 21
5.2.10 MIB Object Editing Dialogs ..................................................................... 21
5.2.11 Object Identifier ........................................................................................ 24
5.2.12 Object Identity .......................................................................................... 24
5.2.13 Module Identity ........................................................................................ 26
5.2.14 Textual-Convention .................................................................................. 28
5.2.15 Object Type .............................................................................................. 30
5.2.16 Table ......................................................................................................... 32
5.2.17 Notification ............................................................................................... 34
5.2.18 Group ....................................................................................................... 35
5.2.19 Module Compliance .................................................................................. 36
5.2.20 Agent Capabilities ..................................................................................... 38
5.2.21 MIB-Tree Colors and Icons ....................................................................... 40
5.3 Built-in Spell Checking ............................................................................... 41
5.4 Finding MIB Objects .................................................................................. 42



ii

5.4.1 Search MIB Repository for Importing Objects .......................................... 43
5.4.2 Search MIB Repository for References ....................................................... 43
5.4.3 Navigate Between MIB Objects ................................................................. 44
5.4.4 Refactor Object Names and Descriptions .................................................. 44
5.5 MIB Validation ........................................................................................... 44
5.6 Saving and Exporting a MIB ....................................................................... 45
5.6.1 Exporting MIBs to XML, HTML, XSD, PDF, and Text .......................... 46
5.7 Printing a MIB module ............................................................................... 46
5.8 MIB File Editor ........................................................................................... 46
5.8.1 Checking a MIB File ................................................................................. 47
5.8.2 Saving and Compiling a MIB File ............................................................. 47
5.8.3 Auto Syntax Completion ........................................................................... 47
5.8.4 Printing with Syntax Highlighting ............................................................. 48
5.8.5 Search and Replace by Regular Expressions ............................................... 48
6 MIB Design ................................................................................................. 50
7 Revision Control ......................................................................................... 60
8 MIB Comparison ........................................................................................ 62
8.1 Comparing Two MIB Modules ................................................................... 62
8.2 Clearing a Comparison ................................................................................ 64
9 SMI Conversion .......................................................................................... 65
9.1 SMIv1 to SMIv2 ......................................................................................... 65
9.1.1 Fully Automated ........................................................................................ 65
9.1.2 Manual Intervention or Review Needed .................................................... 66
9.1.3 Not Supported .......................................................................................... 67
9.2 SMIv2 to SMIv1 ......................................................................................... 68
9.2.1 Fully Automated ........................................................................................ 68
9.2.2 Not Supported .......................................................................................... 69
10 Correction ................................................................................................... 70
10.1 Index Range Correction ............................................................................... 70
10.2 INTEGER Usage Correction ...................................................................... 70
10.3 Case Correction ........................................................................................... 70
10.4 SMI Macro Import Correction .................................................................... 70
11 Tools ........................................................................................................... 72
11.1 Extracting SMI from RFC Documents ........................................................ 72
11.2 Tool Configuration ..................................................................................... 72
11.3 Tool Execution ............................................................................................ 77
12 Preferences .................................................................................................. 78
12.1 General ........................................................................................................ 78
12.1.1 MIB Compiler ........................................................................................... 78
12.1.2 Other Options ........................................................................................... 78



iii

12.1.3 MIB Generation ........................................................................................ 79
12.2 Repository ................................................................................................... 80
12.3 View ............................................................................................................ 80
12.3.1 Look & Feel .............................................................................................. 80
12.3.2 Other View Settings .................................................................................. 81
12.4 Spell Checking ............................................................................................ 81
12.5 Defaults ....................................................................................................... 81
12.6 Syntax Highlighting .................................................................................... 82
12.7 Printing ....................................................................................................... 82
12.8 Internet Proxy ............................................................................................. 83
13 Trouble-Shooting ....................................................................................... 84
14 Error Messages ............................................................................................ 87
15 Regular Expression Syntax .......................................................................... 96



iv



MIB DESIGNER USER GUIDE
System Requirements 1

1 System Requirements

Minimal system requirements for MIB Designer version 5.2 or later:

 200 MB free disk space - not including disk space required for the Java
runtime environment installation. 

 512 MB free RAM (1 GB or more recommended).

 Java Runtime Environment (JRE) 17 or later installed and the JRE’s
bin directory added to the system’s PATH environment variable.

 File system that supports filenames with up to 64 characters.



MIB DESIGNER USER GUIDE
Installation2

2 Installation

There several MIB Designer installation packages available for download
from https://agentpp.com/download.html. 

In general, there are the following types of installation packages
available, however only the JAR is available for all supported target
platforms:

 Installation package with platform integration (start menu, application
icon) including the OpenJDK Java Runtime without JavaFX.

 JAR file - Help display with system browser is used to access help
online or from the installed accompanied files.

See section “System
Requirements” on page 1 for the
system requirements of the
supported platforms.

The mds-<version>.jar file can be used on all platforms, including
Windows, but without start menu integration.

2.1 Using Native Installer
The native installation packages provide best operating system integration,
for example start menu entry and an application icon on the desktop/
launch menu. 

To start the installation simply download and run the native
installation file after download and follow the instructions.

Once you have started MIB Designer and entered your license
information, choose File>Install... to install MIB Designer MIB files and
repository as well as other accompanied files on your system.

2.2 Other Platforms
Download the mds-<version>.jar file in a folder of your choice. Start
the MIB Designer application by

 double clicking it from your system’s file explorer, or

 running:

java -jar mds-<version>.jar

Once you have started MIB Designer and entered your license
information, choose File>Install... to install MIB Designer MIB files and
repository as well as other accompanied files on your system.



MIB DESIGNER USER GUIDE
Installation 3

2.3 Starting MIB Designer
If you have used an OS installer to install MIB Designer then you can start
it from your systems application start menu. 

Alternatively double click the downloaded mds-<version>.jar file
or run java -jar mds-<version>.jar from the command line.

When MIB Designer is started for the first time, you will be prompted for
your license information. 

Please enter your license including
blanks! The license key, which is
case sensitive, must be entered
without any blanks! 

If you are using a restricted license you can upgrade it later without
reinstalling MIB Designer by choosing Help>License… from the main
menu.

A MIB file can be specified as command line parameter which is then
compiled and loaded on startup:

java -jar mds-<version>.jar <mibfile>

2.4 Updates and Upgrades
MIB Designer will contact a service
on https://updates.snmp.app to
check if new updates are available
for the installed version and
license. When you confirm the
update, the new version will be
downloaded from https://
agentpp.com from the same
location you would use for a
manual download.

You can use Help>Check for Updates to check online (see also
“Internet Proxy” on page 83) if there are free updates or upgrades available
for your MIB Designer installation from https://agentpp.com.

If a new version is available you can choose to download it and replace
your current version in-place with the update and restart the application
immediately thereafter.

After the restart and if a newer version of the accompanied file set is
available with the new version, MIB Designer will ask you to install them
over the current installation location. If you confirm the installation, MIB
Designer will overwrite existing files with their newer version unless you
have activated the setting “Warn before overwriting files”. See “Repository”
on page 80.

MIB modules in a repository must
not replaced individually, because
they include an unique ID that is
generated during compilation of
each MIB module. When mixing
MIB module files from different
repositories, IDs might no longer
be unique, which can cause
inconsistencies when loading MIB
modules.

MIB Designer will not overwrite or replace any files of the
mibrepository or mibrepo-* directories of your previous
installation. Instead a newer version of the compiled MIB files - the “MIB
Repository” - is stored in a folder named mibrepo-<date> where
<date> represents the date when that versions has been built by
AGENTPP. 

2.5 Uninstall

Note: The files installed by the
Install menu item must be
uninstalled manually, if they are
no longer needed.

For an installation with one of the native installer packages, please use the
platform specific uninstall mechanisms to remove the software itself. 

Otherwise it is sufficient to remove the mds-<version>.jar file.
In any of both cases, you may manually remove the accompanied files

installed by MIB Designer during initial startup at a location you had then



MIB DESIGNER USER GUIDE
Uninstall4

chosen.

MIB Designer holds its configuration data in the MIBDesigner4.cf
file in your home directory. To completely uninstall MIB Designer, this
file has to be removed manually. By removing it, you will have to reenter
your license information - as well as other configurations - when you
reinstall MIB Designer.



MIB DESIGNER USER GUIDE
What Is MIB Designer? 5

3 What Is MIB Designer?

MIB Designer is a tool to visually create and edit MIB modules that
comply with the Structure of Management Information (SMI) rules. With
MIB Designer there is no need to be familiar with ASN.1 or SMI syntax
notation. Providing tools like drag & drop of MIB nodes, error checking,
and preview with syntax highlighting, MIB Designer makes writing MIBs
a question of minutes - on nearly any operating system. 

While designing MIBs with MIB Designer, its tree view with integrated
SMI preview guarantees best overview of the MIB information. Its search
function provides fast access to any portion of the MIB. The intuitive
graphical user interface ensures building syntactically correct MIBs that
will compile with all SMIv1 and SMIv2 compliant MIB compilers.

MIB Designer can be used to create new SMIv2 MIB modules but it
can also be used to edit existing SMIv1 or SMIv2 MIB modules. Creating
of SMIv1 MIB modules is not supported since the IETF requires new MIB
modules to be written in SMIv2, however you may create your MIB as
SMIv2 and convert it back to SMIv1 for compatibility with SMIv1-only
compilers (see “SMIv2 to SMIv1” on page 68).

The MIB Designer features are:

 Round-trip editing for SMIv1 and SMIv2 MIB modules. as well as
SPPI PIB modules

 New MIB modules are automatically created using SMIv2.

MODULE-IDENTITY editing is
supported via popup dialog only
in order to enforce revision
control.

 Supports editing all SMIv2 objects (including Agent-Capabilities)
with popup dialogs and directly with the SMI object editor which has
SMI syntax completion built-in (via <Ctrl>-<Space>)

 Intuitive graphical user interface with easy table editing. 

 Preview of module and single objects with syntax highlighting.

 Text, HTML, XML, XML Schema (XSD), and PDF export of MIB
modules.

 Formats and pretty prints existing and new MIB modules.

 Search MIB tree and MIB repository by regular expression

 Runs everywhere (where Java Runtime Environment 6 or later is avail-
able).

 Virtually unlimited Undo/Redo.



MIB DESIGNER USER GUIDE
What Is MIB Designer?6

DEFVAL and DISPLAY-HINT clause
content checking, for example, is
not supported by most other MIB
editors and compilers.

 Various consistency checks strictly following the SMIv1, SMIv2, and
SPPI standards.

 Automatic refactoring of object references when the referred object is
changed.

 Validates the SMI syntax of an edited MIB module or a single MIB
object and selects invalid nodes in MIB tree and invalid SMI text in
SMI editor window. SMI text of current MIB object is annotated with
found errors and spelling issues.

 Edit object references by selecting MIB objects from option menus.

 Easy import of MIB objects and textual-conventions from other MIB
modules.

 Leniently import a MIB with minimized error checking in order to be
able to correct it.

 Optional revision control of MIB modules to protect them against
incompatible changes.

 Editing of several MIB modules at the same time with the ability to
copy, cut, and paste objects between modules.

 Visual comparison of MIB modules. Differences are shown by colored
nodes in the MIB tree; differences between objects are shown by
underlined text in the SMI preview.

 MIB files and objects can be edited in a text editor supporting search
and replace using Perl 5 regular expressions and syntax completion
through <Ctrl>-<Space>. 

 Edit and print MIB files with syntax highlighting.

 Integration of external tools by configuration, for example to issue
SNMP requests, view a MIB module as PDF using a PDF viewer, gen-
erate program code from a MIB module or a set of MIB modules.

 Spell checking of entered text on the fly with correction suggestions.

 GZIP compression of compiled MIB modules in the MIB repository
for less disk usage and faster loading of MIB files from disk storage.

 SMI conversion from v2 to v1 and vice versa (with full undo/redo).

 Automated correction of some typical SMI(v2) syntax errors.



MIB DESIGNER USER GUIDE
Setup 7

4 Setup

A few things need to be setup, before MIB Designer can be used to edit or
create MIB modules. Please follow the steps set forth below.

4.1 Selecting a MIB Repository
When MIB Designer is started for the first time it asks to create a MIB
repository if there is not any set. A MIB repository is a directory where
MIB Designer stores MIB information using an internal format. A new
MIB repository is created by simply creating an empty folder. 

The option to create a new folder
might not be available on all look
& feels. 

You can do this with means of your operating system or by using the
Open MIB Repository Directory dialog directly.

By default, MIB Designer already installs a MIB Repository directory
where you installed the accompanying files and selects this directory as
MIB repository. You may change this, but you do not need to. 

Please make sure when selecting
the MIB repository directory that
its name is shown at the bottom of
the MIB repository selection
window within the file name field
before you press OK (see Figure 1). 

At any later point, the MIB repository can be changed by choosing
File>Set Repository from the main menu. Switching from the current
MIB repository to any other MIB repository does not alter any data of the
repositories.

Figure 1: MIB repository selection dialog

4.2 Compiling MIB Files
MIB files may be imported into a MIB repository as follows: 



MIB DESIGNER USER GUIDE
Compiling MIB Files8

1. Use the File>Import menu ( ) to import a single MIB file, check its
syntax and - if it is OK - to add it to the MIB repository and load it for
editing. 

2. If the MIB file has errors, a text editor will open (shown by Figure 2).
The encountered errors are listed above the edit area. Once the MIB
file is correct, the Import button ( ) can be used to save and import
the corrected file. If the file has still errors then these errors will be dis-
played in the editor. 

MIB file ZIP archives must have a
file extension of ‘.ZIP’ or ‘.zip’ to
be recognized by the MIB
compiler.

3. Use the File>Compile MIBs menu ( ) to add a directory or a list of
files to the MIB repository by updating any existing MIB modules By
opening a directory all files in that sub-tree are sorted by their import
dependencies and then loaded into the repository. ZIP archives found
in the sub-tree are opened and the included MIB files are sorted and
loaded into the repository as if the archives were unpacked.

4. After having processed all MIB files, MIB Designer will report any
errors in a message box. The detailed error messages can be viewed by
choosing Details… from that message box. The Compiler Log window
is then shown as illustrated by Figure 3. The compiler log table can be
printed from the log table’s context menu and sorted by column by
clicking on the column’s header. By clicking on a row corresponding to
a MIB file, the MIB file editor right pane can be used to correct the
syntax error. After pressing the editors Import button, the correspond-
ing row will be updated in the compiler log table. 

5. Use the File>Add MIBs menu to add a directory or a list of files to the
repository without updating/changing any existing MIB modules. As
for the rest this method behaves similar to the above.

6. Use the File>Import Leniently menu if the MIB module has errors
that you want to correct with MIB Designer. Please check the
imported MIB module immediately after loading as described in sec-
tion “Refactor Object Names and Descriptions” on page 44, because it
may contain errors although it has been loaded successfully. This
option reduces the error checking of the SMI parser to a reasonable
minimum to facilitate the process of correcting broken MIB modules. 

Section “Error Messages” on page 87 shows a list of all error messages.



MIB DESIGNER USER GUIDE
Setup 9

Figure 2: MIB File Editor



MIB DESIGNER USER GUIDE
Deleting MIB Modules10

 

Figure 3: Compiler Log

4.3 Deleting MIB Modules
Caution: By pressing OK on the
MIB deletion confirmation dialog,
the MIB will be removed from the
repository without providing any
means for undoing the deletion!

MIB modules are removed from the MIB repository by choosing
File>Delete… ( ) from the main menu. A shuffle dialog is opened
which allows selecting the MIB module(s) to be deleted. By pressing OK,
all MIB modules on the right list will be deleted. Because there is no Undo
for this action, a confirmation dialog is shown. 

If a MIB module depends on a MIB module that is added to the right
list, the dependent MIB module will also be moved to the right. 



MIB DESIGNER USER GUIDE
Setup 11

Figure 4: Deleting MIB modules.



MIB DESIGNER USER GUIDE
Using MIB Designer12

5 Using MIB Designer

After starting MIB Designer the left (tree) window will contain the last
edited (and saved) MIB module. If there is no such module you will be
asked to create one with the MIB creation wizard. 

The panel on the right side is divided into the SMI (object) editor and
a read-only preview and navigation panel:

The syntax completion is
available in the SMI Editor and the
MIB File editor. See “Auto Syntax
Completion” on page 47.

 SMI Editor - The SMI object editor shows the SMI definition of the
current node under the Objects and Textual-Conventions root nodes.
For objects other than a MODULE-IDENTITY construct, the SMI
editor can be used to directly edit the objects definition. By pressing
<Ctrl>-<Space> SMI syntax completion tries to complete the SMI
text. If there is only a single valid completion, then the token (if any)
at the cursor position will be replaced by the completion. If there are
several completions, a popup dialog appears to select the appropriate
completion by pressing <Enter> or double clicking on the item to use
for completion. If there is no completion, then no changes to the text
will be done. To cancel the completion dialog press <ESC>.

 SMI Preview/Navigation - The preview and navigation panel provides
a SMI preview of the selected node. In contrast to the editor, the pre-
view SMI panel contains additional navigation comments for easy
navigation through the MIB tree using hyper links. Comparison
results are also displayed in this panel. For more information about
MIB module comparison see “MIB Comparison” on page 62. 

The following sections describe which steps are necessary to create a new
SMIv2 MIB module (“Creating a New MIB” on page 13) and how MIB
Designer’s object editing dialogs can be used to edit such a MIB module
(“Editing a MIB” on page 17).



MIB DESIGNER USER GUIDE
Using MIB Designer 13

Figure 5: MIB Designer’s main window.

5.1 Creating a New MIB
In order to create a new MIB module select File>New ( ) from the main
menu. A three step wizard opens. By following the wizard step-by-step, a
new MIB module can be easily created - including a top level object
structure and a basic set of object groups. 

Before the wizard opens you will be asked to save unsaved changes. You
should do so, to ensure that the verification of the MIB module object
identifier after finishing the wizard finds up-to-date OID information in
the MIB repository.

The New MIB Wizard is described in detail by the following section
“New MIB Wizard”. If you cancel the wizard then a minimal new MIB
module with the name NEW-SNMP-MIB will be created.

The following steps have to be performed only if the wizard has been



MIB DESIGNER USER GUIDE
Creating a New MIB14

canceled, before the newly created module can be saved:

1. Edit the module’s name by selecting the tree’s root node, opening the
tree’s context menu by pressing the right mouse button and selecting
Edit. 

2. Import any object identifiers and textual-conventions you wish to use
with the new module from other MIB modules by choosing
Edit>Imports… from the main menu. For details on the Imports
menu see subsection “Import” on page 17. The imported MIB objects
will then appear in the MIB tree under the Objects and the Textual-
Conventions node. 

3. Add any OBJECT IDENTIFIERS or OBJECT IDENTITIES that
need to be defined above your module identity node. A SMIv2 MIB
must define a module identity node exactly once. Object identifiers
and object identities are added by selecting Add>Object Identifier or
Add>Object-Identity from a node’s context menu, respectively. 

4. Add a module identity node by selecting Add>Module-Identity from
the context menu of the node under which you want to define it.

5.1.1 New MIB Wizard

The wizard for new MIB (and PIB) modules has three steps:

1. Specify the name of the new MIB module and a common prefix for
object names of this MIB module and whether the new module
should be a SNMP MIB or a non-SNMP PIB module.

2. Specify the root object identifier for the new MIB module.

3. Specify whether a default object structure and basic object groups
should be created by the wizard.

Step 1
The prefix for all new object names created for this MIB module is defined
by the with the Common Object Name Prefix. The object name prefix
must start with a lower case letter (typically a lower case word) and must
not contain hyphens or spaces.



MIB DESIGNER USER GUIDE
Using MIB Designer 15

You can change the prefix for a
MIB module later by editing the
MIB Designer configuration file
located in your user directory:
Search for the line that starts with
DefaultObjectName. and the MIB
module name for which you want
to modify the default prefix:
DefaultObjectName.<MODULE-
NAME>=<prefix>. 
Then simply replace the <prefix>
text with the new object name
prefix you want to set and save the
text file.

The name of the module is specified with the New MIB Module Name
field content. The module name must contain upper case letters and the
hyphen (-) character only.

By checking the Create a Policy Information Base (PIB) module box,
MIB Designer will create a PIB module instead of a SNMP MIB module.
If you want to create MIBs for SNMP, you should leave the box
unchecked.

Step 2
When defining a new MIB module, the second step, after creating a name
for it, is to define a root object identifier (OID). There is typically only a
single root OID for a MIB module, but that is not mandatory. Additional
root objects can be added later using the Edit/Imports menu. 

A possible root OID for an enterprise specific MIB module is the
enterprises ID assigned by IANA (http://www.iana.org) or any OID
defined in a subtree of that OID by an enterprise specific registration MIB
module. 

When creating a registration MIB module, then import the
enterprises OID and assign your IANA ID in the spin field left of the
respective check box.

Otherwise, choose an OID from another MIB module (Select MIB to
import root OID from), which can be imported optionally from an
external MIB file. 

Use an unique sub-identifier to avoid duplicate registrations which causes
severe problems at runtime which could render your product unusable! 

MIB Designer will check uniqueness with the current MIB repository
when you finish the wizard. If the OID (including the given sub-identifier)
you have chosen is already defined elsewhere, then you will be warned to
you can return to this step. 

Step 3
With this step, a basic structure could be created that is needed by typical
MIB modules. Any MIB objects created by this wizard step can be easily



MIB DESIGNER USER GUIDE
Creating a New MIB16

removed from the MIB module if not actually needed (any more).
Therefore it is recommend the use the default: create all structure objects.

 Top Level MIB Structure

This option will create the top level structure including all the object
identifier nodes shown by Figure 6.

 Create Basic Object Groups

This option will create an object and a notification group definition.
Both are initially empty, which is not allowed for such groups by the
SMIv2 standard. Therefore, a syntax error is displayed when the MIB
has been checked for errors.
In Preferences you may define a default object and notification group
by giving patterns matching those default object group names. By
default those patterns are “Basic” in both cases. Thus, whenever you
create a new OBJECT-TYPE or NOTIFICATION-TYPE, its object
name will be added to the respective group.  

By confirming the wizard with the Finish button, MIB Designer will
search the MIB repository for object identifier registrations that conflict
with the new MIB module‘s object identifier. If such a conflict is detected
you will be asked whether you really want to create the MIB module now.
If you choose No, the wizard will open again and you can modify the
selected root OID (or the suffix ID) in “Step 2” and try again.

Figure 6: A sample MIB module structure created by the New MIB Wizard.



MIB DESIGNER USER GUIDE
Using MIB Designer 17

5.2 Editing a MIB
With MIB Designer MIB objects can be added, edited, copied, cut, pasted
and removed. These functions can be accessed through a node’s context
menu or through the Edit menu. Undo ( ) and redo ( ) of edit
operations is available for the last 50 actions. 

Depending on the type of the node (i.e., whether it is an OBJECT-
TYPE, OBJECT IDENTIFIER, etc.) some of the menu items may be
disabled. If the MIB object, for example, is an OBJECT-TYPE then the
Add menu will be disabled, because SMI does not allow defining an object
below an OBJECT-TYPE definition. All menu items of the context menu,
apart from Add, have also counter parts on the tool bar ( ).

With a Drag&Drop mouse operation, Cut&Paste or Copy&Paste can
be performed by a single mouse click. The default drag action is ‘move’
which cuts the entire sub-tree rooted at the selected node and pastes that
sub-tree as a new (last) child under the target node. 

By pressing <Ctrl> while selecting the node to be dragged, the drag
action can be changed to ‘copy’. It copies a selected leaf node or sub-tree.
A copy of the dragged node (and its sub-tree) is then inserted as a new (last)
child of the target node. Please refer to sections “Copy”, Cut, and “Paste”
on page 19 for further details on cut, copy, and paste.

The object ID of any MIB object that is a descendant of the Objects
node can be dragged to any external application capable of text or string
dropping. 

5.2.1 Import

Before an object from another MIB module can be used or referenced in a
module it must be imported. Objects are imported using the
Edit>Imports… menu item (alternatively: <Ctrl-Alt-I> or Import… from
the node context menu) or via the Search MIB Repository dialog (see
“Search MIB Repository for Importing Objects” on page 43). Choosing
Edit>Imports opens the Imports window which is shown by Figure 1. 

To import an object definition or ASN.1 macro from a MIB module:

1. Select the MIB module that defines the object definition from the
Source MIB Module list. If you are unsure where the object is defined,
use the Search MIB Repository function to look it up.

2. With the Add or Add All buttons, you can select the object to be
included in the MIB modules IMPORT clause. 

To remove an object definition or ASN.1 macro from a MIB module:

1. Select the MIB module node under the Imports node in the MIB tree
from which the definition has been imported.



MIB DESIGNER USER GUIDE
Editing a MIB18

2. Select Edit from the context menu.

3. Select the object definition to be removed in the right table (named
“Imported”) and press the Remove button. If the button is disabled
then the MIB module has still references to this node. You will then
have to remove those references before you can remove the import.

Caution: When SMI macros are
imported automatically,
unnecessary MACRO imports will
be removed from the imports
clause and MACRO imports will be
grouped at the bottom of each
import source statement!

By activating the option “Automatically import SMI macros” in
Edit>Preferences, MIB Designer automatically imports all SMI macros
necessary for the current module whenever the module is checked by
View>Check. When activated this is also done automatically when saving
a module. 

Figure 7: Imports window

5.2.2 Add

To add a MIB object to the current module, select the object under which
you want to create the new object and choose Add from the Edit menu.
Alternatively, you may choose Add from the context menu. The new
object is created as the last child of the selected node. The new object has
a default name and an automatically assigned object ID. Further details on
editing MIB objects and an overview of all possible MIB objects and their
editor windows can be found in section “Moving Objects” on page 21. 

5.2.3 Copy
MIB objects are copied to an
internal clipboard which is not
shared with other applications.

A MIB object (and its sub-tree) is copied to the internal clipboard by
selecting the corresponding node within the MIB tree and pressing <Ctrl-
C> (alternatively: , Edit>Copy, or Copy from node context menu). The



MIB DESIGNER USER GUIDE
Using MIB Designer 19

copy is identical to the original nodes except for the object names. The
copy’s object names are changed to ‘<original_name>n’, where n is the
number of the copy starting from 0. Its object ID and those of all objects
in the copied sub-tree are adapted when the object is being pasted. When
the sub-tree contains a MODULE-IDENTITY construct, then this object
will be transformed to an OBJECT-IDENTIFIER in the copy, because a
MIB module must contain exactly one MODULE-IDENTITY.

Whenever a node is copied to the internal clipboard, its OID is copied
to the system clipboard. Thus, copying a node can be used to export the
OID of an object as a string to an external application. Because textual-
conventions do not have an OID their object name is copied instead.
Please note that when copying/cutting a sub-tree only the OID of its root
node is copied to the system clipboard. 

5.2.4 Cut

A sub-tree or a single MIB object is cut to the clipboard by selecting the
root node of the sub-tree or by selecting a leaf node, respectively and then
pressing <Ctrl-X> (alternatively: , Edit>Cut, or Cut from node context
menu). A cut sub-tree can be pasted more than once, provided that it does
not contain a MODULE IDENTITY node.

A cut sub-tree, or any cut MIB object other than a TEXTUAL-
CONVENTION, can be pasted to OBJECT IDENTIFIERS (nodes),
OBJECT IDENTITIES, and MODULE IDENTITIES only. If the cut
object is a TEXTUAL-CONVENTION it can be pasted to the Textual-
conventions node only.

5.2.5 Paste

A sub-tree or a single object cut or copied to the clip-board, can be inserted
beneath a selected node by pressing <Ctrl-V> ( , Edit>Paste, or Paste
from node context menu). If an object name of any of the pasted objects is
already used within the module then it will be renamed by appending 0 to
its name. If its name ends on a number the number will be incremented by
one. The OID of the pasted node (sub-tree) is changed to the next
available OID after the last child’s OID.

If the target node of the paste operation is a leaf object of type
OBJECT-TYPE (i.e. a scalar MIB object) or NOTIFICATION-TYPE
then the copied node will be pasted as next sibling to the target node. 

Existing sibling objects and their children will be renumbered if
necessary to place the pasted node. 



MIB DESIGNER USER GUIDE
Editing a MIB20

5.2.6 Edit
The prefix of the object ID is given
by the parent node and therefore
fixed. The OID’s suffix however,
can be given by one or more sub-
identifiers (unsigned numbers)
separated by dots.

A selected node is edited by pressing <Ctrl>-E ( , Edit>Edit, or Edit from
node context menu). The editor windows vary from object type to object
type, but common to all windows is the Object Definition group. Here the
object’s name, ID, status, description and an optional reference can be
edited. Please note that depending on the edited object some of the above
listed fields may be disabled. Textual conventions, for example, do not
have an object ID. Module identities do not have a status.

Changes to the edited object are not committed until the user closes the
editor window by pressing its Save button. When saving the changes, the
object’s ID and the name are checked for being valid and not ambiguously
defined within the current MIB module. In the case of an invalid object
ID or name, an error dialog is shown and the user may then correct the
invalid ID or name.

In addition to editing a SMI object through editor dialogs, unreleased
SMI objects can also be edited directly by using the SMI editor (see
“Editing a MIB” on page 17). Within the editor you can enter the SMI
specification of the selected node in the MIB tree. Only valid SMI syntax
may be saved into the tree by either selecting another node or pressing
<Alt>-S. MIB Designer allows to save a node even if the change renders
the whole MIB module invalid. Thus, it is recommended to check the
whole MIB module by pressing <Alt>-C after all changes have been made
to a MIB module.

5.2.7 ASN.1 Comments
If the leading hyphens are left out
then they will be added by MIB
Designer.

For each node ASN.1 comments can be entered or edited respectively. A
comment can be placed at the top of each node or inline before the object
identifier assignment1. 

To edit a comment, choose ASN.1 Comments from the context menu
and then select either Edit Top Comment or Edit Inline Comment. Each
entered comment line must start with two consecutive hyphens as long as
the line is not empty. The next sequence of two consecutive hyphens would
end the ASN.1 comment. But in most cases this is not desirable, so it is
wise to avoid them.

1. The inline ASN.1 comment is only available for MIB objects with an object identifier assignment.



MIB DESIGNER USER GUIDE
Using MIB Designer 21

If a MIB module is exported with
activated „generate MIB Designer
comments“ option (see “General”
on page 78) and re-imported
afterwards then the generated
OID comments appear as inline
comments. While exporting the
module another time, MIB
Designer detects that the
comment is already there and will
not regenerate it. 

ASN.1 comments should be used rarely, because most MIB browsers
are not able to show such comments. Thus, any information that is needed
to understand a MIB object or module should be described in its
DESCRIPTION attribute.

The built-in spell checker marks incorrectly spelled words on the fly by
a dashed line. To correct a word, a context menu with suggestions can be
opened by pressing the right mouse button.

5.2.8 Moving Objects

MIB objects other than textual conventions can be moved upwards or
downwards on their tree level by using <Alt>-<Up> and <Alt>-<Down>
respectively:

Press <Alt>-<Up> to move a node
upwards in the tree.

1. Moving an object upwards, swaps the object identifier (OID) of the
moved object with its preceding sibling. All OIDs of the objects regis-
tered in the sub-trees of the moved and the preceding object will be
changed accordingly. To move an object upwards, choose
Edit>Move>Up from the main menu or Move>Up from the object
node’s context menu.

Press <Alt>-<Down> to move a
node downwards in the MIB tree.

2. Moving an object downwards, swaps the object identifier (OID) of the
moved object with its following sibling. All OIDs of the objects regis-
tered in the sub-trees of the moved and the following object will be
changed accordingly. To move an object downwards, choose
Edit>Move>Down from the main menu or Move>Down from the
object node’s context menu. 

An addition to MIB objects also import sources can be ordered by moving
them up or down within the Imports node.

5.2.9 Renumbering Objects

The child objects of a node can be renumbered using the OID increment
set in preferences by using the Subtree>Renumber menu item of the
context menu on the parent node. The child objects are then renumbered
starting with one and each next sibling child node’s last sub-identifier is
assigned the last sub-identifier value of its predecessor plus the value of the
OID increment setting (see “Defaults” on page 81). The descendant
objects below each child are renumbered accordingly.

5.2.10 MIB Object Editing Dialogs

All MIB editor windows are divided into groups that group the properties
of the edited MIB object. The Object Definition group is common to all
node editor windows and contains fields for defining the object that are:



MIB DESIGNER USER GUIDE
Editing a MIB22

Object Name
The Object Name field specifies the node’s name. The name must start
with a lower case letter for all MIB objects except textual conventions.
Textual conventions must start with an upper case letter. In any case, the
name must be unique with the current MIB module. 

When changing a name, all references to that name within the same
MIB module will be changed accordingly. For example, if a name of an
index column is changed, then the INDEX clause of the corresponding
table as well as the OBJECTS clause of all OBJECT-GROUP definitions
referencing that columnar object will be changed too. 

A default object name for new objects can be specified in the
preferences dialog of MIB Designer. It is recommended to use your
companies name and an abbreviation of the product or purpose that
uniquely identifies your set of MIB objects in order to avoid object name
clashes with other MIB modules. 

Object ID
The Object ID field specifies the object identifier assigned to the node.
This property consists of a read-only field denoting the parents object
name (OID prefix) and a changeable field for the node’s OID suffix. In
most cases, this suffix is a single sub-identifier which may be any unsigned
integer value between 0 and 232-1. In some cases it may be necessary to
define a node without defining an object identifier for its direct parent, in
particular when defining a module identity that is not the root node of a
new MIB module. 

When changing the OID suffix of a node, MIB Designer will not move
the node to the assigned new location until the user refreshes the view ( ).
This provides a more easy way of tracking changes.

Please note that the assigned OID must be unique for all nodes. Also it
is allowed to define different names for the same OID by using an
OBJECT IDENTIFIER construct, it is not wise to do so, because many
tools available today cannot handle this correctly and there is no need for
it. Because of these reasons MIB Designer does not allow defining more
than one name for an OID.

Because registered OIDs must be globally unique, MIB Designer
provides an easy way to check whether an OID is already assigned to any
other MIB module (in the current MIB repository). By clicking on the
Object ID button, the current MIB repository will be searched for any
occurrence of the assigned OID for this object. If the edited MIB module
has already been saved to the MIB repository, occurrences in that MIB
module will also been shown, although it is normally save to ignore them.



MIB DESIGNER USER GUIDE
Using MIB Designer 23

Status
The status field specifies the validity of the object definition. If the field is
disabled a status cannot be specified for the given node. The status is then
assumed to be current. The possible values for SMIv2 modules are:

 current – The definition is valid.

 deprecated – The definition is valid in limited circumstances, but has
been replaced by another. The new definition typically encompasses a
wider scope, or has been changed for ease implementation.

 obsolete – The definition is not valid. It was found to be flawed; could
not be implemented; was redundant or not useful; or was no longer
relevant.

Reference
The reference field specifies the source of the definition. It may refer to a
document from another standards organization, or an architectural for a
proprietary system. Although only a single line is displayed at once,
multiple lines can be entered. By pressing the Reference button a text
editor will open which allows a more comfortable editing of the reference
text.

Like the comment editor, text entered in the reference field is
background checked by the built-in spell checker. Misspelled words are
marked by a dashed red underline. Words can be corrected using a
suggestion list of up to ten words by opening a context menu with the right
mouse button.

Description
By holding down the <Ctrl>
button while pressing the
Description button, spell
checking for the description field
can be invoked directly from the
object editor. 

The description field provides a textual description of the object being
defined. By pressing the Description button a text editor will open which
allows a more comfortable editing of the description text. In addition, the
edited text is background checked for spelling errors. Misspelled words are
marked by a dashed red underline. Words can be corrected using a
suggestion list of up to ten words by opening a context menu with the right
mouse button. 

 Please note that the above descriptions for the common properties of
all objects are not repeated in the following subsections which describe the
special properties of the respective objects. 

Changes made to an object definition will not take affect until the
editor window is closed by pressing the <Save> button. If an editor
window is closed via the <Cancel> button any changes made to the object
will be discarded.



MIB DESIGNER USER GUIDE
Editing a MIB24

5.2.11 Object Identifier

The OID value assignment construct OBJECT IDENTIFIER is used to
assign an OID value to an identifier in the MIB module. It does assign an
object name to an OID, thus the common object definition properties
status, reference, and description as described in “Moving Objects” on
page 21 are not available for an object identifier definition (see Figure 8).
Only an identifier (the object name) and an object ID must be specified.

SMI allows assigning multiple names to a single OID. It does not allow
registering an OID to multiple object definitions. The former is not
recommended because there currently exist a lot of tools in the SNMP
world that are not capable of handling ambiguous OID to object name
mappings. MIB Designer will display a warning message when such an
assignment is attempted. In case of a duplicate OID registration (done
with one of the editors below), MIB Designer will display an error message
and will not save the definition until the OID is changed to an unregistered
one.

Figure 8: Object identifier editor dialog

5.2.12 Object Identity

In contrast to an OBJECT IDENTIFIER, an OBJECT-IDENTITY
definition uniquely registers an OID value with an object name. A



MIB DESIGNER USER GUIDE
Using MIB Designer 25

registration is a permanent assignment of an OID, which means that no
other item may be registered with the same OID value.

An object identity definition supports all the properties listed in
“Moving Objects” on page 21 and can be used to register an OID for an
item. For example, a product, contact information for a sub-tree, or any
other item which need not to be necessarily related to SNMP. The editor
window for an object identity (Figure 9) looks similar to the object
identifier window (Figure 8), except that the status, reference, and
description fields are editable.

Figure 9: Object-Identity editor dialog.



MIB DESIGNER USER GUIDE
Editing a MIB26

Figure 10: Text editor for a description field.

5.2.13 Module Identity

The MODULE IDENTITY construct is used to specify information
about SMIv2 MIB modules. As any other object definition it consists of
the Object Definition group described in “Moving Objects” on page 21 and
a Module group whose fields are described below (see Figure 11). Please use
the Description property to specify copyright and grant of use license when
creating an enterprise specific MIB.

Last-Updated
Specifies the last date and time the current module has been modified in
the ExtUTCTime data type format. The format used is an extended
subset of the UTC (coordinated universal time) time format from ASN.1.
The format is [YY]YYMMDDHHmmZ where:

 [YY]YY is the 2 or 4 digit year (using 4 digits is required for years after
1999);

 MM is the month (01 through 12);

 DD is the day (01 through 31);

 HH is the hour (00 through 23);

 mm is the minute (00 through 59); and

 Z is the uppercase letter Z which denotes Greenwich Mean Time
(GMT).



MIB DESIGNER USER GUIDE
Using MIB Designer 27

The value of the last-updated field property must be identical to the date
and time from the first revision/description clause, if present. Thus, if there
is at least one revision entered, this field will be updated automatically,
otherwise it can be updated to the current date and time by pressing the
Update button.

Organization
The organization field specifies the name of the organization that has
authority over the definitions created in the current MIB module.

Contact
The contact field specifies contact points for technical information.

Revision/Description
The paired REVISION/DESCRIPTION clauses are optionally used to
specify information about the creation and revision of the module in
reverse chronological order. In order to add a revision, press the Add
button. A new list entry will be added to the top of the list and the Last-
Updated field will be updated too. The new revision is then edited by
pressing the Edit button. The revision editor window allows freely editing
the date and time of the revision and its description or editing the UTC
time by a calendar popup dialog. The popup dialog is opened by clicking
on the Revision button. With the Remove button one or more revisions
can be removed from the list.

If revision control is activated (see section “Exporting MIBs to XML,
HTML, XSD, PDF, and Text” on page 46) in the general preferences
menu, then adding a new revision will lock all objects defined in the
current MIB module, that have not been locked yet through a previous
revision.

Removing the latest revision will unlock all associated objects, thus all
objects that have been added since the preceding revision. Removing an
intermediate revision will associate the locks of that revision with the
subsequently revision. 



MIB DESIGNER USER GUIDE
Editing a MIB28

Figure 11: Module identity editor dialog.

5.2.14 Textual-Convention

Basic SMIv2 (SNMPv2/v3) data
types are INTEGER, Integer32,
Gauge32, Counter32, Counter64,
Unsigned32, OBJECT IDENTIFIER,
BITS, OCTET STRING, and Opaque.

TEXTUAL-CONVENTION definitions are used to create a new type.
Since the basic data types supported by SNMP cannot be dynamically
extended, new types can only be defined by adding constraints to an
existing base type or a reduction in length of strings.

Although the textual-convention editor contains an Object Definition
group (see Figure 12), the object name of a textual-convention must start
with an upper case letter. The properties shown by the textual-convention



MIB DESIGNER USER GUIDE
Using MIB Designer 29

specific group are described below.

Figure 12: Textual-convention editor dialog

Syntax
The syntax field specifies the type of the syntax. The type string is shown
in a read-only text field without showing possible enumeration or range
values. The complete syntax definition is available by the field’s tool tip.
The syntax definition can be edited by pressing the Edit button. The
syntax editor dialog window appears where you can choose from all
possible built-in syntax types, type assignments and textual-conventions
that were imported or were defined in this MIB module. 

Adding an object import from
within the syntax editor has
immediate effect although it can
be undone after the MIB object
editor is closed (regardless
whether changes  are saved or
not).

If you want to use a type assignment (SMIv1) or textual convention
(SMIv2) that is not already imported then you can use the Import button
to select the definition and add it to the modules IMPORTS clause. 

Additionally, the syntax editor window lets you specify valid string sizes
and number ranges as well as enumerated values.

Using the context menu is
recommended for multi-line
comments.

When defining enumerated values, you may add associated ASN.1
comments by either using the Comment column of the comment’s context
menu of the Enumeration table.

A scalar type cannot have ranges and enumerated values at the same
time. Non-scalar types, for example OCTET STRING based types, can
have size (“range”) restrictions only.



MIB DESIGNER USER GUIDE
Editing a MIB30

Display-Hint
The DISPLAY-HINT property, which need not be present, gives a hint as
to how the value of an instance of an object with the syntax defined using
this textual convention might be displayed. It can only be specified for
types that are based on integer or octet string. Please refer to RFC 2579
section 3.1 for further details on the allowed formats.

5.2.15 Object Type

The OBJECT-TYPE construct is used to specify definitions of columnar
and scalar object types, which are also called leaf objects. The pairing of the
identity of a leaf object (its OID) and the value to identify an instance of
that leaf object is called an SNMP variable. SNMP variables are the
operands and results of SNMP operations.

Figure 13 shows the OBJECT-TYPE editor window, like any other
object editor window it contains an Object Definition group and an
OBJECT-TYPE specific group.

Figure 13: Object-type editor dialog.



MIB DESIGNER USER GUIDE
Using MIB Designer 31

Syntax
Specifies the syntax of the object-type in the same manner as the syntax
clause of a textual convention (see subsection “Textual-Convention” on
page 28). 

Max-Access
Specifies the maximum allowed access to the leaf object. Possible values
are:

 not-accessible – The object-type is a column in a table used as an
index (or an index part) and may not be used as an operand in any
operation.

 accessible-for-notify – The object-type is special operand for event
report operations.

 read-only – The object-type may be an operand in only retrieval and
event report operations.

 read-write – The object-type may be an operand in modification,
retrieval, and event report operations.

 read-create – The object-type may be operand in modification,
retrieval, and event report operations. Additionally, it may be an oper-
and in a modification operation creating a new instance of the object-
type. 

Default Value
Specifies an acceptable value which may be used when an instance of a row
is created via an SNMP modification request and the object-types value is
not initialized by that request. A default value cannot be specified for index
objects of tables. 

For enumerated and BITS syntaxes the default value have to be chosen
from the available values by using the Choose button. 

To remove the DEFVAL clause from an OBJECT-TYPE definition
empty the default value field (for enumerated or BITS values use the Clear
button of the default value selection dialog accessible through the Choose
button).

Units
Specifies a textual description of the units associated with the data type.



MIB DESIGNER USER GUIDE
Editing a MIB32

5.2.16 Table

Two OBJECT-TYPE constructs along with a SEQUENCE construct
specify a definition for SMI table object. An SNMP table contains rows
and columns. A table cannot be an operand or result of an SNMP
operation. Thus, the maximum access for the two object-type constructs
defining a table is not-accessible. Because a table is defined by two object
definitions, the table editor window shown by Figure 14 has two Object
Definition groups, named Table and Entry. 

Figure 14: Table editor dialog

By convention the name for the table object definition ends with “Table”
and the name for the entry (row) object ends with “Entry”. 

The description property of the table object should describe the
information in the table or its usage as well as estimations on the maximum
number of rows and any objects whose values are associated with the table. 

The description property of the entry (row) object should document
whether rows can be created or deleted via SNMP operations, and if so,
then what is required for this to happen. It should supplement the
description of the RowStatus object of such a table.



MIB DESIGNER USER GUIDE
Using MIB Designer 33

Index / Augments
The INDEX / AUGMENTS property specifies how rows are indexed in
the table. The INDEX clause lists the ordered index items for a table.
Typically, the index items are names of not-accessible columns in the table.
If a table consists of index columns only, then the last index column has to
be read-only. In addition, read-only index columns are allowed when
porting SMIv1 MIB modules to SMIv2. 

The AUGMENTS clause documents a special relationship between
two tables. The item specified is the entry object of another table, the base
table. For every row in the augmenting table there has to be exactly one
corresponding row in the base table with the same index value.

The total length of all index-sub-identifiers plus the length of the
OBJECT-TYPE’s OID must not exceed 128 sub-identifiers. 

Implied Length of Last Index Object
This may be only specified for index objects whose base type is a varying
length string (i.e., OCTET STRING and Opaque) or an object identifier. 

The rows in a table are ordered by the value of the table’s indices. If an
index object has a varying length string base type, its contribution to the
index OID is built by n+1 sub-identifiers, where the first sub-identifier is
the length of the string and each following sub-identifier is the ASCII value
of the corresponding character of the string. If a string or an object
identifier has a fixed length then sub-identifier denoting the length is
omitted. This can be forced by checking the IMPLIED property for the
last sub-index.

The index objects for the table can be easily chosen using a shuffle
dialog which is opened by pressing the Choose button.

Sub-index values with IMPLIED length must have at least one sub-
identifier.

Columns
The Columns group specifies the columns that are part of the table. In
order to add (append) a column to the table, press the Add button below
the columns overview table. A column may then be moved within the table
by editing its OID. A column may be modified by selecting it and then
pressing the Edit button. As usual, one or more columns may be removed
from the table by selecting the appropriate row(s) in the columns table and
then pressing the Remove button.



MIB DESIGNER USER GUIDE
Editing a MIB34

5.2.17 Notification

The NOTIFICATION-TYPE construct is used to specify the events that
can be reported by an agent (i.e., a notification originator). The OID value
assigned to a notification-type is sent with a notification in order to
identify it. Figure 15 shows the notification-type editor window with its
Object Definition and Objects group.

Objects
The optional OBJECTS clause can be used to specify one or more scalar
or columnar objects whose values describe the event. Objects can be added
and removed from the notification-type definition by pressing the Choose
or the Remove button respectively. Alternatively, you may press Choose
to open a shuffle dialog with which you can choose the objects that must
be at least provided with a notification. 

By clicking on the right table’s header of shuffle dialog you may sort the
objects in ascending or descending order. 

Figure 15: Notification-type editor dialog.

Object Group
Being part of at least one notification object group is mandatory for any
NOTIFICATION-TYPE. The notification type editor allows to select a
group directly from the editor. This is especially useful, when creating a
new notification type. To edit group memberships when a notification-



MIB DESIGNER USER GUIDE
Using MIB Designer 35

type should be part of more than one notification group, then editing those
groups is necessary as described in the following section.   

5.2.18 Group

The OBJECT-GROUP and NOTIFICATION-GROUP constructs are
used to define a collection of related object type definitions and
notification type definitions respectively. Consequently, both editor
windows are very similar. They consist of an Object Definition group and
an Objects group.

Every object type with a value for the MAX-ACCESS clause other than
“not-accessible” must be a member of at least one object group. A similar
rule applies to notifications. Each notification type must be a member of
at least one notification group. 

Objects
The Objects group specifies one or more scalar or columnar objects that
are related to each other. Objects can be added and removed by pressing
the Choose or the Remove button respectively. The Choose button
opens a shuffle dialog which can be used to add all or any subset of
available objects to the group. With the special button Add Ungrouped
adds all objects to the edited group which have not been assigned to any
object/notification group yet.

Analogous to the objects editor of the NOTIFICATION-TYPE
construct, objects may be sorted in ascending or descending alphabetical
order by clicking on the table header.  

Figure 16: Object/notification group editor



MIB DESIGNER USER GUIDE
Editing a MIB36

Please note that the object types grouped through an OBJECT-
GROUP should conform to the status clause of that object group
definition.

5.2.19 Module Compliance

The MODULE-COMPLIANCE construct is used to convey a minimum
set of requirements with respect to implementation of one or more MIB
modules. Besides the Object Definition group, the module compliance
editor window (Figure 17) contains an Objects group which can be used to
specify a list of MIB modules for which the module compliance statement
defines requirements.

Modules
Specifies a non-empty list of MIB modules for which compliance
requirements are being specified. Each MIB module is named by its
module name which can be selected from a combo box, which is shown
when clicking on a list item. The module name may be (left) blank to refer
to the encompassing MIB module. The details of a compliance
requirement can be edited by selecting the corresponding module name
and then pressing the Edit button. 

Figure 17: Module compliance editor dialog

The requirements for a compliant implementation of a module can then
be edited with the dialog window shown by Figure 17.



MIB DESIGNER USER GUIDE
Using MIB Designer 37

Mandatory Groups
The Mandatory Groups clause specifies a possibly empty list of names of
object or notification groups within the correspondent MIB module which
are unconditionally mandatory for implementation.

Conditional Groups and Exceptions
Specifies a mix of the following two types of items:

1. Object and notification groups which are conditionally mandatory for
compliance to the MIB module. In addition, unconditionally optional
groups can be specified. In any case a group specified as being condi-
tional must not be listed in the mandatory groups property at the same
time.

2. MIB objects for which compliance has a refined requirement with
respect to the MIB module definition. The refinement details for a list
entry are shown in the Details group of the dialog window when the
entry is selected (see Figure 17). The details can then be edited. The
description property must be given. All other properties are optional
and can be specified by checking the box on the right side of the prop-
erty label. The required syntax and write-syntax are edited as described
in section “Textual-Convention” on page 28.

Figure 18: Dialog for editing implementation requirements details.



MIB DESIGNER USER GUIDE
Editing a MIB38

5.2.20 Agent Capabilities

The AGENT-CAPABILITIES construct is used to specify
implementation characteristics of an SNMP agent sub-system with respect
to object types and events. 

Product-Release
The Product-Release field contains a textual description of the product
release which includes this set of capabilities.

Supported Modules
The Supported Modules clause specifies a possibly empty list of MIB
modules for which the agent claims a complete or partial implementation.
Details about the implementation of a module can be edited by selecting
it and then pressing the Edit button.

Figure 19: Agent-capabilities editor window

The details about a module implementation can be edited by using the
dialog window shown by Figure 20.



MIB DESIGNER USER GUIDE
Using MIB Designer 39

Includes
The Includes field specifies a non-empty list of MIB groups associated with
this supported MIB module which the agent claims to implement.

Variations
The Variations field specifies a possibly empty list of objects or
notifications which the agent implements in some variant or refined
fashion with respect to the correspondent OBJECT-TYPE or
NOTIFICATION-TYPE definition. In order to edit the refinement
details of such an object or notification, select the corresponding object
name and details will be shown in the Details group where they can be
modified too. 

Figure 20: Supported module editor window.
 



MIB DESIGNER USER GUIDE
Editing a MIB40

5.2.21 MIB-Tree Colors and Icons

The node label colors in the MIB tree have the following meaning:

 Black denotes a not-accessible or accessible-for-notify MIB object as
well as textual conventions or type assignments.

 Gray denotes a read-only MIB object type.

 Light-Gray denotes any MIB object that is obsolete or deprecated.

 Blue denotes a read-write MIB object type.

 Red denotes a read-create MIB object type.

 Orange denotes a trap or notification type.

By checking the option “Use SMI object type specific tree icons” under
Preferences>View, object type specific tree icons are displayed instead of
the default tree icons of the used Look&Feel. The icons displayed
represent the following SMI object types:

A SMIv2 MODULE-IDENTITY definition.

Scalar OBJECT-TYPE definition.

Tabular OBJECT-TYPE definition characterized by a SYN-
TAX clause using “SEQUENCE OF”.

Table entry OBJECT-TYPE definition that defines the
INDEX and columns of a conceptual table row.

A columnar OBJECT-TYPE definition.

An SMIv2 OBJECT-IDENTITY definition.

A SMIv2 TEXTUAL-CONVENTION definition or SMIv1
type definition.

An OBJECT-GROUP definition.

An SMIv2 NOTIFICATION-TYPE or a SMIv1 TRAP-TYPE
definition.

A NOTIFICATION-GROUP definition.

A MODULE-COMPLIANCE definition.

An AGENT-CAPABILITIES definition.



MIB DESIGNER USER GUIDE
Using MIB Designer 41

5.3 Built-in Spell Checking
MIB Designer contains a built-in spell checker that is available for any text
input field within the object editors and the SMI Editor. The spell checker
uses American English as reference. If you need other languages, please
contact support@agentpp.com. 

New in 5.2: Improved spell-
checking quality with quick fixes
in all text field editors and the SMI
Editor. Ignored issues (exceptions)
can now be edited in Preferences
directly.

Exceptions for the spell checker can be defined while using it with the
Ignore buttons (see below) or by explicitly edit these exceptions in the Spell
Checker section of the Edit>Preferences… ( ) dialog.

Text input fields are background checked and misspelled words are
marked by a dashed red underline. By pressing the right mouse button over
a (misspelled) word, a context provides a selection of correction
suggestions.

The spell checker dialog can be invoked wherever the label for a text
input field is a button (see also “Moving Objects” on page 21). By holding
down the <Ctrl> key when pressing the label button, the spell checking for
the text in the text input field is started. If the spell checking encounters an
error the window shown by Figure 21 will pop up. It allows ignoring,
replacing, changing, or learning the word in question. 

By just pressing the label button, a text editor window can be opened
that provides a more convenient way to edit extensive texts. In addition,
that window has a button to start spell checking as well.

The actions for a found spelling issue are:

 Ignore 

Just ignore the word for this occurrence. 

 Ignore All 

Ignore this issue for the whole text and for any future checks. You can
review and undo such global exceptions in the preferences dialog in
the section “Spell Checking” on page 81. 

 Change

Change this occurrence from the found string to the new string given
in the text field labeled Change to.

 Change All

Change this occurrence and any future in this text to the value given in
field Change to and proceed with the next spelling error. 

 Cancel

Stop spell checking and close dialog.



MIB DESIGNER USER GUIDE
Finding MIB Objects42

Figure 21: Spell checking dialog.

5.4 Finding MIB Objects
MIB Designer uses Perl 5 regular
expressions which are described
in the documentation of the GNU
regular expression library
documentation that is distributed
with MIB Designer.

MIB Designer has the capability of searching the current MIB module or
the whole MIB repository by a given regular expression. The search dialog
shown by “Finding MIB Objects” on page 42 is accessed by choosing
Edit>Find from the main menu ( ), which will search the current MIB
module or by choosing Edit>Search MIB Repository (see “Search MIB
Repository for Importing Objects” on page 43), which will search the
whole MIB repository. 

Figure 22: Finding a MIB object.

Objects are searched by matching the given regular expression with the
objects’ attributes that have been checked. By checking All, the whole SMI



MIB DESIGNER USER GUIDE
Using MIB Designer 43

text, including key words (as shown in a node’s preview) is matched against
the given regular expression.

When using the Edit>Find… menu or  button the MIB tree is
searched from its root until the first matching node is found. The next
matching node can then be found by using the Edit>Find Again menu or

 button. Please note that Find Again always starts searching at the
currently selected node in depth first order.

The incremental search panel in the tool bar provides the same search
capabilities with a quick access. In addition, previous and next matches can
be accessed using the Up and Down arrow of the incremental search tool
bar.

5.4.1 Search MIB Repository for Importing Objects

By searching the MIB repository using Edit>Search MIB Repository the
search results will be displayed in a table. Each row in the table represents
a MIB object that matched the given search criteria. By selecting one or
more rows and then pressing the Import Selected button, those objects
are added to the IMPORTS clause of the currently edited MIB module. If
an object is already imported by the current module, a warning message
will be displayed. If an object is a TRAP-TYPE or NOTIFICATION-
TYPE an error message will be displayed, since those objects cannot be
imported by a MIB module.

In addition to the search options available by the Find MIB Object
dialog shown by “MIB repository selection dialog” on page 7, the search
dialog for the searching the MIB Repository provides the search option
Imports which allows to search import references. This option searches
references in IMPORT, MODULE-COMPLUANCE, and AGENT-
CAPABILITIES clauses that match the specified search pattern. To narrow
the search results to references of a certain set of MIB modules, a search
pattern for MIB module names followed by a colon (‘:’) may be prepended.

5.4.2 Search MIB Repository for References

To avoid inconsistencies when editing a set of MIB modules, it is often
useful to be able to search for references to a MIB object in other MIB
modules. MIB Designer provides this feature through the menu item
Search References in the context menu of a MIB object. 

The MIB modules in the MIB repository are searched for any
references (by IMPORT clauses) to the selected MIB object. All matched
MIB modules and the referring objects are listed in the displayed search
result dialog. By selecting one or more list items, the corresponding MIB
modules can be opened for editing. 



MIB DESIGNER USER GUIDE
MIB Validation44

5.4.3 Navigate Between MIB Objects

An easy navigation between the recently visited MIB objects is provided
through the Forward ( ) and Back ( ) buttons on the tool bar as well as
the corresponding menu items in the View menu.

To navigate to the adjacent MIB objects of a selected node, the “Show
object navigation links” option from the View preferences can be used.
When activated, this option displays navigation links within the SMI
preview window. The object links are displayed as ASN.1 comments and
the underlined object names of the adjacent objects can be clicked. 

5.4.4 Refactor Object Names and Descriptions

When the name of an organization or product changes, it can be necessary
to change the object names of a sub-tree when creating a new MIB module
for the new organization or product that should include the old objects
with new names for backward compatibility. 

The Search and Replace function of MIB Designer can be used to
replace object names and/or descriptions by a regular expression. 

Do not change OIDs of released
MIB objects as this would violate
SMI rules and break existing
applications.

To search and replace object names and/or descriptions in a sub-tree of
a MIB module, select the root of the sub-tree in the MIB tree and then
choose Edit->Replace ( ) menu. A dialog that is similar to the search
dialog shown by Figure 22 is displayed. 

The search option for OIDs is only recommended for advanced users,
because it is often easier to change OIDs by rearranging sub-trees with
Copy & Paste, Drag & Drop, Move Up/Down, or changing a sub-tree
OID by editing a MIB object. Nevertheless, since MIB Designer 5.0 you
can search and replace OIDs too. This operation will not replace OIDs of
locked MIB objects which have been released already. See “Revision
Control” on page 60 for more information. 

Enter the search expression in the search field and the replacement
expression or string into the replace field. The replace expression may
contain regular expression group references ($1, $2 etc.) to include parts of
the matching string into the replacement string. 

For each match found, you will be asked whether it should be replaced
or skipped. When an object is locked, because it has already been released,
it will not be included in the search result. If you choose to replace all
occurrences you can undo (and redo) all replacements at once. Otherwise
undo is available step by step.

5.5 MIB Validation
A MIB module can be checked for errors at any time by choosing
View>Check from the main menu ( ). If the current MIB has any errors
then they will be shown in the errors table below the SMI preview and the



MIB DESIGNER USER GUIDE
Using MIB Designer 45

MIB object containing the first (selected) error is selected in the MIB tree.
The error location is then highlighted in the node’s SMI preview.

5.6 Saving and Exporting a MIB
The current MIB module can be saved by choosing File>Save from the
main menu ( ), which saves the module into the current MIB repository.
The MIB is not checked for errors. 

In order to be able to use a MIB outside MIB Designer, it is necessary
to export it as a text file. This is done by choosing File>Export as… from
the main menu (alternatively: ). You will be prompted for a file name
which could be every valid file name on the used operating system. A
default name is provided for convenience.

The preview function of MIB Designer (View>Preview, <Ctrl-P>, )
not only provides a preview of the whole SMI definition of the current
MIB module, further more, it can be used to export it to HTML.
Figure 23, for example, shows a detail of the preview for the ADSL-LINE-
MIB. 

Figure 23: Example SMI preview (ADSL-LINE-MIB).



MIB DESIGNER USER GUIDE
Printing a MIB module46

5.6.1 Exporting MIBs to XML, HTML, XSD, PDF, and Text

MIB modules can be exported from the MIB repository as XML, XML
Schema (XSD), HTML, PDF, or plain text files. The text colors that can
be set for printing (see “Printing a MIB module” on page 46) and syntax
highlighting of the MIB file editor apply also to the PDF export function. 

To export a set of MIB modules:

1. Choose Export MIBs from the File menu. 

2. Choose the file format for the exported MIB modules. 

3. Select the MIBs to export from the list of available modules and press
the Add button to add them to the list of modules to be exported. 

Note: Any files that already exist in
the destination directory might be
overwritten without warning!

4. Choose the destination directory. 

5. Press OK to start the export operation. Each MIB module will be
exported to a file, whose name will be the MIB modules name concat-
enated with one of the suffixes .txt, .html, .xml, .xsd or
.pdf. 

6. Press Apply to export the selected MIBs with the selected settings (dia-
log remains open).

7. When exporting to PDF, you will be prompted by an additional dialog
for page layout and other document settings. You can choose the page
size, footer, outline structure and font size. 

8. Alternatively, press OK to export and immediately close the dialog or
Cancel to leave the dialog without exporting any data. 

5.7 Printing a MIB module
The current MIB module can be printed with syntax highlighting by
choosing Print from the File menu. The operating systems print dialog will
be opened, where printer and pages to be printed can be specified. The
MIB file is printed black-and-white with header, footer, and line numbers
by default. To change these settings go to the MIB Designer preferences
dialog and select the Printing tab. 

5.8 MIB File Editor
The current MIB module can be edited as a text file by choosing MIB File
Editor from the Edit menu. The MIB File Editor is opened (see Figure ).
The editor has the usual capabilities of a text editor including undo and
redo. In addition it has four special features that are explained in the
following paragraphs.



MIB DESIGNER USER GUIDE
Using MIB Designer 47

5.8.1 Checking a MIB File

By choosing Check (SMI Standard) from the File menu the MIB file is
checked for syntax errors that violate the SMIv1 or SMIv2 standard
respectively. The file is not saved automatically while it is checked. In case
syntax errors have been found they are displayed in the error list. 

By choosing Check (Leniently) from the File menu the MIB file is
checked for fundamental syntax errors. The file is not saved automatically
while it is checked. In case syntax errors have been found they are displayed
in the error list.

5.8.2 Saving and Compiling a MIB File

By choosing Import MIB ( ) from the editor’s File menu the edited file
is saved and compiled. If compilation fails, then the contained MIB
module will not be imported into MIB Designer. Instead an error text will
be displayed in the text area below the editor’s tool bar. On successful
compilation, the MIB module will be stored in the MIB repository and
loaded. At the same time the editor window will be closed. 

The default above method to import a MIB uses the syntax checking
that is configured in MIB Designer preferences. In order to use a specific
level of syntax checking, i.e. either the SMI standard check or a lenient
syntax check. 

In order to import a MIB file with SMI standard syntax checking, use
the green import icon ( ) or the corresponding menu item in the File
menu. 

In order to import a MIB file with lenient syntax checking, use the
yellow import icon ( ) or the corresponding menu item in the File menu.

5.8.3 Auto Syntax Completion

The syntax completion works similar to the code completion features of
many Java or C++ IDEs. By pressing <Ctrl>-<Space> at any position
in the edited text, MIB Designer shows possible replacements for the token
under to cursor. 

If there is only a single possible replacement then the text under the
cursor will be replaced with it. If that is not what you wanted you need to
press <Ctrl>-Z to undo the operation. Otherwise, the possible
completions will be displayed in a popup dialog. An entry can be applied
by double clicking on it or pressing <Enter>. 



MIB DESIGNER USER GUIDE
MIB File Editor48

Note: The shown completion
alternatives are based on syntax
analysis only. Semantically, some
of those alternatives may not
make any sense. This will be,
however, reported by the
validation checks which need to
be run manually. See “MIB
Validation” on page 44.

The completion alternatives are listed in alphabetically ordered. You
can jump within the list by typing the first letter of the entry you search.
From the possible replacements listed below only those are displayed that
would syntactically fit at the cursor position:

 SMI tokens like DESCRIPTION, SYNTAX, read-write, etc.

 Lowercase names of the MIB module edited

 Uppercase names of the MIB module edited

 0 as placeholder for a positive number including zero

 1 as placeholder for a positive number excluding zero

 ’’b as placeholder for a binary string constant

 ’’h as placeholder for a hexadecimal string constant

 “255d“ as placeholder for an OCTET STRING DISPLAY-HINT
format definition

 “d” as placeholder for an DISPLAY-HINT format specification of a
numeric SMI variable.

 “ “ as placeholder for a character string constant.

 "YYYYMMDDhhmmZ" representing the current date and time in
ExtUTCTime format. See “Last-Updated” on page 26.

If the contents of the edited MIB file cannot be analyzed, lower- and upper
case names cannot be listed. Instead, the placeholders lowerCaseName
and UpperCaseName are displayed.

5.8.4 Printing with Syntax Highlighting

To print the MIB file loaded into the MIB File Editor, choose Print ( )
from the editor’s File menu. See also section “Exporting MIBs to XML,
HTML, XSD, PDF, and Text” on page 46. 

5.8.5 Search and Replace by Regular Expressions

A powerful way to make modifications to a MIB file is searching and
replacing by regular expression. Section “Regular Expression Syntax” on
page 96 gives a brief description of regular expression syntax. 

To search a MIB file by a regular expression, choose Find ( ) from the
Edit menu. Enter the expression to search for in the opened dialog. The
combo box will remember ten expressions used last.

To search and replace found matches, choose Replace ( ) from the
Edit menu. Enter the search expression and the substitution expression and
press OK. A matched region in the MIB file will be selected and a



MIB DESIGNER USER GUIDE
Using MIB Designer 49

confirmation dialog will be shown. Each substitution can be confirmed
individually or all substitutions can be confirmed at once.

The substitution string may contain variable interpolations referring to
the saved parenthesized groups of the search pattern. A variable
interpolation is denoted by $1, or $2, or $3, etc. It is easiest to explain what
an interpolated variable does by giving an example: 

Suppose you have the pattern b\d+: and you want to substitute the b's
for a's and the colon for a dash in parts of your input matching the pattern.
You can do this by changing the pattern to b(\d+): and using the
substitution expression a$1-. When a substitution is made, the $1 means
"Substitute whatever was matched by the first saved group of the matching
pattern." An input of b123: after substitution would yield a result of a123-
.

Many common errors in MIB files can be corrected by using the RE search
and replace function. Here are three examples:

1. INTEGER may only be used for enumerations in SMIv2. To replace
INTEGER by Integer32 for other definitions use:
Search Expression: (\s+)INTEGER(\s+)(?!\{)
Substitution Expression:
$1Integer32$2

2. Within SEQUENCE constructs sub typing (i.e. range or size restric-
tion) is not allowed. To delete such sub typing in SEQEUNCE con-
structs use (enter search expression as single line without spaces):
Search Expression:
(\n\s*[a-z][a-zA-Z0-9]*\s*\n*\s+
[A-Z][a-zA-Z0-9]*\s*[A-Z]*)\s*\(\s*
((\d+.*)|(SIZE\s*\(.*\)))\)
Substitution Expression:
$1

3. The under bar “_” character is not allowed in enumeration labels. To
delete the “_” and change the following letter to uppercase use:
Search Expression:
([a-z][a-zA-Z0-9]*)_([a-zA-Z0-9]+\s*\(\d+\))
Substitution Expression:
$1\u$2



MIB DESIGNER USER GUIDE
MIB Design50

6 MIB Design

This section contains descriptions, explanations, and solutions for the top
ten MIB Design errors. These issues have been collected over years from
support questions and consulting projects. Soon it turned out, that a few
misunderstandings of the Structure of Management Information RFCs
produce a majority of over 80% of the syntax errors. This section should
help MIB authors to identify and avoid these, unfortunately very common,
errors in order to increase interoperability and usability of SNMP based
solutions.

Readers are encouraged to view also the following documents:

 Guidelines for Authors and Reviewers of MIB Documents (RFC 4181). 

 Configuring Networks and Devices with Simple Network Management
Protocol (SNMP), section 3, Designing a MIB Module (RFC 3512). 

Why do so many (enterprise) MIB modules contain syntax errors and
other design flaws? The main reason is probably, a lack of good MIB design
tools (editors and compilers) in the early years of SNMP. MIB authors
relied on inaccurate implementations of MIB parsers that were not
developed to do strict syntax and semantic checking but rather designed to
be error-forgiving. With an increasing number of available SNMP tools,
interoperability problems also increased caused by the diversity of different
error checking levels and capabilities. 

Another reason for many interoperability issues is likely to be the “bad
habit” of many MIB compilers and tools to provide customizable error
reporting levels allowing users to disable reporting of errors/warnings
although these errors - or even more worse - warnings report SMI standard
violations.

MIB Designer fills this gap with an unreached combination of a SMI
conforming MIB compiler with strict syntax checking and an intuitive
graphical user interface. MIB Designer has only two levels of syntax
checking: lenient and SMI standard. With the second level you can be sure
to avoid interoperability issues caused by SMI standard violations. The
lenient level should be used to more easily fix a MIB module only!

The following list of common MIB Design issues is by far not complete by
means of a complete collection of MIB design errors or pitfalls.
Nevertheless it tries to shed some light on the most commonly made and
fewest understood errors:



MIB DESIGNER USER GUIDE
MIB Design 51

 Every SMIv2 MIB module must define exactly one MODULE-
IDENTITY immediately following IMPORTS. 

 Descriptors must start with a lower case letter and MIB module names
and type or textual convention definitions names with an upper case
letter. 

 In SMIv2 sub-typing and enumerating values are forbidden in
SEQUENCE clauses. 

 Descriptors must not contain underscore (‘_’) characters 

 The ASN.1 primitive type ‘INTEGER’ should only be used for
named-number lists in SMIv2. 

 Every accessible OBJECT- and every NOTIFICATION-TYPE defini-
tion must be contained in at least one object group. 

 The ExtUTCTime format used for LAST-UPDATED and REVI-
SION clauses is [YY]YYMMDDhhmmZ. 

 A TEXTUAL-CONVENTION cannot refer to a previously defined
TEXTUAL-CONVENTION. 

 The elements in a SEQUENCE clause must match a table’s lexico-
graphic ordered columns exactly. 

 Mixing SMIv1 and SMIv2 constructs and clauses in the same MIB
module.

The SMIv2 MODULE-IDENTITY must immediately follow the 
IMPORTS construct:
RFC 2578 §3 requires that every SMIv2 MIB module starts with a
MODULE-IDENTITY construct (immediately following the IMPORTS
clause). Because the Structure of Management Information (SMI) lacks
explicit versioning, the absence or presence of the MODULE-IDENTITY
is the only usable indication for a SMI parser whether a module is written
for SMI version 1 (MODULE-IDENTITY is absent) or version 2
(MODULE-IDENTITY is present). Probably caused by some MIB
compilers that cannot handle object identifier forward referencing
correctly, some MIB authors do not place the MODULE-IDENTITY
immediately following the IMPORTS clause as shown be the example
below.



MIB DESIGNER USER GUIDE
MIB Design52

Figure 24: MODULE-IDENTITY does not immediately follow IMPORTS.

The attentive reader will have recognized a second error in the above
example: The missing import of the MODULE-IDENTITY macro (see
RFC 2578 §3.2). 

MIB parsers that differentiate between SMIv1 and SMIv2 (what any
validating MIB parser should) will report an error about the unexpected
MODULE-IDENTITY construct in the above example. A correct version
of the above MIB module would read as follows:



MIB DESIGNER USER GUIDE
MIB Design 53

All comments (green text) in this
example are optional and need
not to be present. In fact some old
or buggy MIB compilers have
problems correctly recognize the
end of comments. The end of a
comment is either marked by two
consecutive hyphens (‘--’) or the
end of the line. The first should be
avoided for maximum
interoperability.

Figure 25: Legal placement of the MODULE-IEDENTITY construct.

Descriptors start with a lower case letter whereas module 
names with an upper case letter:
Descriptors, i.e., object names, enumeration labels, have to start with a
lower case letter. MIB module names and type names, i.e., names of
TEXTUAL-CONVENTIONs and SEQUENCEs, have to start with an
upper case letter. For more details see RFC 2578 §3.1.

In SMIv2 sub-typing and enumerating values are forbidden 
in SEQUENCE clauses:
RFC 2578 §7.1.12 requires that syntax clauses of the subordinate objects
do not contain sub-typing or enumeration of values. Consequently the red
marked content have to be removed from the following conceptual row
definition example in order to be valid SMIv2:



MIB DESIGNER USER GUIDE
MIB Design54

In this example, only the red
marked portions are invalid. The
object names for the OBJECT-
TYPE definitions have been
chosen to have a common prefix
as recommended by RFC 2578,
that is unique (by best effort)
across other MIB modules. For this
example, the common prefix is
“mibdesignInvalidSequence”. 

Figure 26: Sub-typing in a SEQUENCE clause is not allowed.

The underscore (‘_’) and in SMIv2 the hyphen (‘-’) character 
are forbidden in descriptors:
Descriptors (including identifiers like MIB module names and type
names) must not contain other characters than:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9 -

The hyphen (‘-’) is only allowed in MIB module names and for SMIv1
descriptors and identifiers (e.g. enumeration labels). In SMIv2, hyphens
are only allowed if the MIB module was converted from SMIv1 (which is
hard to prove by a MIB compiler). Hyphens in enumeration labels are not
allowed in SMIv2. In any case a descriptor or identifier must not end with
a hyphen. One reason for the latter, might be easier mapping of
enumeration labels to programming languages, where the hyphen is
commonly interpreted as minus sign.



MIB DESIGNER USER GUIDE
MIB Design 55

The ASN.1 primitive type ‘INTEGER’ should only be used for 
named-number lists in SMIv2:
Although RFC 2578 not explicitly forbids using the INTEGER primitive
type for (non-enumerated) integer types, it is recommended to use
Integer32 for such type definitions instead. When ignoring this
recommendation, one has to add a range restriction on the INTEGER
primitive type, to narrow its value range at least to -2147483648 to
2147483647 which is a requirement by RFC 2576 (Coexistence between
Version 1, Version 2, and Version 3 of the Internet-standard Network
Management Framework) §2.1.1. 

This restriction seems to be unnecessary because INTEGER and
Integer32 are indistinguishable on the wire, but theoretically the ASN.1
primitive type can represent values outside the above range. RFC 2576
probably tried to avoid misunderstandings by MIB readers familiar with
ASN.1 about the possible value range of such types. Future enhancements
regarding 64bit signed INTEGER values might have been also a
motivation for this rule.

The following example illustrates this typical error. The error is solved
simply by replacing “INTEGER” with “Integer32” in the first red marked
row:

The text “INTEGER MAX-ACCESS”
was marked by MIB Designer
because it expected a range
restriction but found “MAX-
ACCESS”.

Figure 27: Use INTEGER for enumerated values only.

Every accessible OBJECT- and every NOTIFICATION-TYPE 
definition must be contained in at least one object group:
RFC 2580 §3.1 and §4.1 respectively require that each accessible
OBJECT-TYPE definition must be contained in at least one OBJECT-
GROUP definition and every NOTIFICATION-TYPE definition must
be contained in at least one NOTIFICATION-GROUP definition. These
requirements assure that every object of a MIB module can referenced by
a compliance statement.

This kind of error is usually introduced in a MIB module when a new
object is added and the MIB author forgets to add it to a group.

MIB Designer offers the option to import a MIB module with a lenient



MIB DESIGNER USER GUIDE
MIB Design56

MIB compiler mode and then adding the missing object group entries by
using a shuffle dialog that shows the unassigned OBJECT-TYPEs or
NOTIFICATION-TYPEs respectively.

The ExtUTCTime format used for LAST-UPDATED and REVI-
SION clauses is [YY]YYMMDDhhmmZ:
The correct format for the LAST-UPDATED and REVISION fields is as
follows (see RFC 2578 §2):

YYMMDDhhmmZ or 

YYYYMMDDhhmmZ

where the elements of the above have the following meaning: 

 YY - last two digits of year (only years between 1900-1999)

 YYYY - last four digits of the year (any year)

 MM - month (01 through 12)

 DD - day of month (01 through 31)

 hh - hours (00 through 23)

 mm - minutes (00 through 59)

 Z - the character Z, which denotes GMT, must always be present.

A TEXTUAL-CONVENTION cannot refer to a previously de-
fined TEXTUAL-CONVENTION:
RFC 2579 §3.5 requires that the SYNTAX clause of a TEXTUAL-
CONVENTION refers to SMIv2 base types only. Thus, it is an error to
derive a TEXTUAL-CONVENTION from another TC as the following
example shows:

Figure 28: Textual convention derived from another.



MIB DESIGNER USER GUIDE
MIB Design 57

The above TEXTUAL-CONVENTION would have been correctly
defined as follows:

Figure 29: Legal textual convention “derivation”.

Since ASN.1 allows type assignments to derive types from other types an
evil-minded MIB author could think about defining
AppnTOSPrecedence as follows:

Figure 30: Type derivation.

Although this would be legal, it is not recommended for the following
reasons:

1. There cannot be associated any parsable information to an ASN.1 type
assignment. In the above example important information included in
the description clause would be lost. 

2. RFC 2576 §2.1.1 demands that all ASN.1 type assignments should be
converted to TEXTUAL-CONVENTION definitions in a SMIv2
MIB module. 

3. Although MIB Designer can resolve such derivation chains even across
several MIB modules, some MIB compilers cannot which could cause
interoperability issues. For example, there are MIB compilers that
would not recognize that AppnTOSPrecedence in the above example
has inherited the DISPLAY-HINT “255a” from DisplayString. 

The elements in a SEQUENCE clause must match a table’s 
lexicographic ordered columns exactly:
RFC 2578 §7.1.12 requires that for every columnar object of a conceptual
table definition a corresponding entry is present in the SEQUENCE clause
defining the syntax of the conceptual row of the table. The entries in the



MIB DESIGNER USER GUIDE
MIB Design58

SEQUENCE clause must appear in the lexicographic order of the
columnar objects (thus ordered by their last sub-identifier). Normally this
is not problematic, since most MIB authors order the columns by the last
sub-identifier. But if this is not the case, for example if columns have been
added by a new revision of a MIB module, then attention has to paid on
the order of the elements in the corresponding SEQUENCE clause. 

The following example illustrates an error caused by wrong ordering of
the SEQUENCE elements. To correct the error, one would have to swap
mibdesignDontsInvalidSeqCol3 and mibdesignDontsInvalidSeqCol2
entries as indicated by the red boxes. Changing the sub-identifiers of those
columns is not allowed by a revision, because this would change the
behavior of the table on the wire.

Figure 31: Inconsistent order of column objects in SEQUENCE and sub-
tree.

Mixing SMIv1 and SMIv2 constructs and clauses in the same 
MIB module:
RFC 2578 §3 explicitly forbids the usage of SMIv1 macro definitions in
SMIv2 modules. The usage of SMIv2 constructs like TEXTUAL-
CONVENTION is forbidden in SMIv1 too. These kind of errors often
occur when manually converting a module from one version to another



MIB DESIGNER USER GUIDE
MIB Design 59

and when the MIB parser/compiler used to check the conversion result
does not properly distinguish between SMIv1 and SMIv2. 

MIB Designer clearly distinguishes between SMIv1 and SMIv2 and
will reliably report such errors. In addition, it provides automatic
conversion from SMIv2 to SMIv1. See RFC 3584 for situations where an
automatic conversion is not completely possible. 

Any new SNMP MIB module should be written in SMIv2 (the
corresponding RFCs 2578, 2579, and 2580 are STANDARD). That’s why
MIB Designer focusses on SMIv2 and does not allow to write new MIB
modules in SMIv1. Nevertheless, MIB Designer warns MIB author’s when
defining a NOTIFICATION-TYPE that is not backward-compatible with
SMIv1 and SNMPv1 (see RFC 3584 §3 for details), because the
NOTIFICATION-TYPE’s second to last sub-identifier is not zero.
Although RFC 3584 defines a mapping for such notifications to SNMPv1
traps, it is wise to avoid such notification definitions for better
interoperability.

Text must contain 7bit ASCII characters only
For interoperability, SMI does not allow using UTF-8 and other non-7bit-
ASCII characters except newline (CR and LF), tab characters (e.g. TAB),
and spaces (see RFC 2578 §3.1.1). This rule applies to all clauses with text
enclosed in double quotes, like DESCRIPTION, CONTACT-INFO,
and REVISION for instance.



MIB DESIGNER USER GUIDE
Revision Control60

7 Revision Control

Even a released MIB module that is already used by many sites may require
maintenance over time. According to the SMI rules, changes to a released
MIB module are subject to some restrictions which guarantee that changes
are compatible with existing implementations of that MIB specification.
Although MIB Designer cannot enforce all of these restrictions, it provides
powerful means to prevent users from making incompatible changes. 

MIB Designer has a revision control mechanism that can be activated
via the Edit>Preferences menu. When this mechanism is activated, a
revision of a MIB module may be released by adding a revision note to its
MODULE-IDENTITY construct (see Figure 10). Whenever a MIB
module revision is being released, all objects new to that revision will be
locked. Locked objects are shown in the MIB tree with underlined object
name. The restrictions that apply to locked objects are listed below:

 OID and object name may not be changed.

 Objects may not be moved within the MIB tree nor removed from the
MIB.

 The only way to delete an object is to set its status to obsolete. If a
table’s status is set to obsolete, then MIB Designer will set the status of
all columns to obsolete too. All objects referencing obsolete objects must
also have an obsolete status.

 Descriptions may only be changed for clarification. The behavior of
the object may not be changed.

 Object lists which are part of OBJECT-GROUP, NOTIFICTION-
GROUP, NOTIFICATIONS, MODULE-COMPLIANCE, and
AGENT-CAPABILITIES may not be changed. The INDEX clause of
a table may not be changed neither.

 The SYNTAX clause of TEXTUAL-CONVENTION or OBJECT-
TYPE definitions may be changed only if it is an enumeration. Then,
new enumerations may be added. Existing labels may be changed only
for clarification purposes. 

Objects added to a MIB module after it has been released, are not subject
to any restrictions. These objects are displayed not underlined in the MIB
tree and may be directly edited with the SMI editor.



MIB DESIGNER USER GUIDE
Revision Control 61

Unlocking a SMIv2 MIB will
remove all information about
which objects belong to which
revision. To retain this
information, the latest revision
information can be removed from
the MODULE-IDENTITY construct
instead.

If revision control is enabled in Preferences (see “Preferences” on
page 78), all MIB modules imported into MIB Designer’s repository will
be locked. Sometimes it might be useful to edit an imported module as if
it has not been released yet, for example, if the MIB module has never been
released yet and has been imported from an external source using MIB
Designer. The Extra>Unlock MIB menu can then be used to unlock such
a MIB. 

Since SMIv1 modules do not have a MODULE-IDENTITY
construct, the revision control is very limited. Nevertheless, the
Extra>Lock MIB menu can be used to entirely lock a MIB. 



MIB DESIGNER USER GUIDE
MIB Comparison62

8 MIB Comparison

MIB Designer may be used to visually compare MIB modules. This
unequaled feature shows the differences between two MIB modules
independently from their formatting. It provides an easy way of tracking
the differences between releases of MIB modules.

In order to be able to compare two MIBs, they must be named
differently and both opened (loaded). If both MIBs have to same module
name, then they can be imported one after the other. In doing so, the first
MIB module imported should be the older revision of the MIB and saved
under a different name before the second one is imported.

8.1 Comparing Two MIB Modules
The current MIB module may be compared with any other loaded MIB

module by selecting the Extra>Compare… menu item. After selecting the
comparative MIB module the objects of the current module that differ
from objects of that module will be displayed with an altered background
color in the MIB tree as shown by Figure 32.

In the Navigation pane of the SMI editor area on the upper right side
of the MIB Designer window, differing content will be displayed
underlined as shown in the example for the SYNTAX and MAX-ACCESS
clauses content.



MIB DESIGNER USER GUIDE
MIB Comparison 63

Figure 32: Example Comparison of two AGENTX-MIBs 

The colors have the following meanings:

 Green – The object has been added to the current module, thus it is
not part of the comparative module.

 Yellow – The object differs from the corresponding object of the com-
parative module.

 Magenta – The object has been changed in an incompatible way, for
example, an OBJECT-TYPE has been changed into an OBJECT-
IDENTIFIER. Thus, magenta indicates obvious violations of SMI
rules.

 Black – The object has been deleted by changing its STATUS to obso-
lete.

For yellow and dark gray colored objects only, parts that differ from the
corresponding comparative object are shown in the SMI preview as
underlined text (provided that HTML preview is enabled). An object and
its comparative counterpart can be displayed side by side by choosing the
Show menu item from the object node’s context menu. 



MIB DESIGNER USER GUIDE
Clearing a Comparison64

8.2 Clearing a Comparison
The results of a comparison can be cleared for the current module by

choosing Extra>Clear Comparison from the main menu.



MIB DESIGNER USER GUIDE
SMI Conversion 65

9 SMI Conversion

Within the Extra menu, MIB Designer provides automated SMI version
conversion between SMIv1 and SMIv2 and vice versa. Although a fully
automated conversion is not possible (and eligible), MIB Designer can save
a lot of repetitive work.

9.1 SMIv1 to SMIv2
To convert a SMIv1 MIB module to SMIv2, choose Extra->Convert to
SMIv2. Because SMIv2 requires a MODULE-IDENTITY construct, the
following wizard dialog prompts for a parent OID of all objects to be
created by the conversion, including the MODULE-IDENTITY
construct.

If necessary, an OBJECT-GROUP and a NOTIFICATION-GROUP
are created too. 

The conversion compromises the steps set forth below. Not all steps can
be performed fully automated. The list below is largely along the lines with
the steps listed in §2.1of RFC3584, however it is grouped by the level of
manual intervention needed for each step.

9.1.1 Fully Automated

The following conversion steps are fully automated by MIB Designer and
do not need manual intervention.

1. The IMPORTS statement references SNMPv2-SMI, instead of
RFC1155-SMI and RFC-1212.

2. For any object with a SYNTAX clause value of Counter, the object’s
SYNTAX clause is changed to Counter32.

3. For any object with a SYNTAX clause value of Gauge, the object’s
SYNTAX clause is changed to Gauge32. If Gauge32 is not the appro-
priate for type, it can be changed to Unsinged32 can be manually after
the conversion.

4. For all objects, the ACCESS clause is be replaced by a MAX-ACCESS
clause. If the value of the ACCESS clause is "write-only", then the
value of the MAX-ACCESS clause is set to "read-write".

5. For all objects, if the value of the STATUS clause is "mandatory" or
"optional" it is set to "current" or "obsolete" respectively. Depending



MIB DESIGNER USER GUIDE
SMIv1 to SMIv266

on the usage of the object, its STATUS might have to be set to “depre-
cated” manually after the conversion.

6. If any INDEX clause contains a reference to an object with a syntax of
NetworkAddress, then a new object is be created and placed in this
INDEX clause immediately preceding the object whose syntax is Net-
workAddress. This new object has a syntax of INTEGER, it is not-
accessible, and its value is limited to the value 1.

Note that the use of
NetworkAddress in new MIB
documents is strongly
discouraged (in fact, new MIB
documents should be written
using SMIv2, which does not
define NetworkAddress).

7. For any object with a SYNTAX of NetworkAddress, the SYNTAX is
be changed to IpAddress.

8. An OBJECT-GROUP is defined, and related object types are collected
into that group - if there are any. Otherwise, the group object is not
defined.

9. A NOTIFICATION-GROUP is defined, and related notification
types are collected into that group - if there are any. Otherwise,
thgroup object is not defined.

10.For any object with an integer-valued SYNTAX clause, in which the
corresponding INTEGER does not have a range restriction (i.e., the
INTEGER has neither a defined set of named-number enumerations
nor an assignment of lower- and upper-bounds on its value), a range
restriction is added to the object.

11.The value of an invocation of the NOTIFICATION-TYPE macro is
an OBJECT IDENTIFIER, not an INTEGER, and is be changed
accordingly. The value of the invocation is the value of the ENTER-
PRISE clause extended with two sub-identifiers, the first of which has
the value 0, and the second has the value of the invocation of the
TRAP-TYPE.
An empty DESCRIPTION clause is be added, if not already present.
The ENTERPRISE clause is removed. The VARIABLES clause is
renamed to the OBJECTS clause. A STATUS clause with value “cur-
rent” is added. If this value is not appropriate for the objects usage
then you should replace it by “deprecated” or “obsolete” as needed.

9.1.2 Manual Intervention or Review Needed

1. The MODULE-IDENTITY macro must be invoked immediately
after any IMPORTs statement. You will have to specify the parent
OID of the MODULE-IDENTITY construct in the wizard and then
edit its DESCRIPTION, CONTACT, etc. clauses manually after-
wards.



MIB DESIGNER USER GUIDE
SMI Conversion 67

2. For any object not containing a DESCRIPTION clause, an empty
DESCRIPTION clause is defined which needs to be filled manually
after the conversion.

9.1.3 Not Supported

The following steps necessary for a conversion from SMIv1 to SMIv2
according to RFC 3584 are not supported by the conversion wizard. These
steps have to be performed manually after conversion - if necessary:

1. For object types for which instances can be explicitly created by a pro-
tocol set operation, their object type’s MAX-ACCESS clause is
replaced by "read-create".

2. For any object corresponding to a conceptual row which does not have
an INDEX clause, the object must have either an INDEX clause or an
AUGMENTS clause defined. Although a missing INDEX clause is
detected by the SMI check, it cannot be automatically corrected by
MIB Designer.

3. For any object containing a DEFVAL clause with an OBJECT
IDENTIFIER value which is expressed as a collection of sub-
identifiers, the value must be changed to reference a single ASN.1
identifier. This may require defining a series of new administrative
assignments (OBJECT IDENTIFIERs) in order to define the single
ASN.1 identifier.

4. For any non-columnar object that is instanced as if it were immedi-
ately subordinate to a conceptual row, the value of the STATUS clause
of that object must be changed to "obsolete". MIB Designer reports
such an issue in its SMI check, but does not correct it automatically.

5. For any conceptual row object that is not immediately subordinate to
a conceptual table, the value of the STATUS clause of that object (and
all subordinate objects) must be changed to "obsolete". MIB Designer
reports such an issue in its SMI check, but does not correct it automat-
ically.

6. All textual conventions informally defined in the MIB module should
be redefined using the TEXTUAL-CONVENTION macro. Such a
change would not necessitate deprecating objects previously defined
using an informal textual convention.

7. For any object which represents a measurement in some kind of units,
a UNITS clause should be added to the definition of that object.

8. For any conceptual row which is an extension of another conceptual
row, i.e., for which subordinate columnar objects both exist and are



MIB DESIGNER USER GUIDE
SMIv2 to SMIv168

identified via the same semantics as the other conceptual row, an
AUGMENTS clause should be used in place of the INDEX clause for
the object corresponding to the conceptual row which is an extension.

9.2 SMIv2 to SMIv1
Although the conversion of a MIB module from SMIv2 to SMIv1 can be
almost fully automated, some information gets lost. MODULE-
IDENTITY, OBJECT-GROUPs and NOTIFICATION-GROUPs
definitions have to be removed from the MIB module, for example.

This conversion can be useful if a system does not support SMIv2 and
that system cannot be changed to support it.

To convert a SMIv2 MIB module to SMIv1, choose Extra->Convert
to SMIv1. The conversion compromises the steps set forth below.

9.2.1 Fully Automated

1. The MODULE-IDENTITY construct is replaced by an OBJECT
IDENTIFIER.

2. All OBJECT-GROUP, NOTIFICATION-GROUP, and AGENT-
CAPABILITIES constructs are removed.

3. For all object types, the MAX-ACCESS clause is replaced by a
ACCESS clause. A value of “read-create” is replaced by “read-write”. 

4. For any object with a STATUS clause of value “current” its value is
replaced by “mandatory”.

5. For any object type with an AUGMENTS clause, that clause is
replaced by an INDEX clause with the value of the INDEX clause of
the referenced conceptual table.

6. All invocations of the TEXTUAL-CONVENTION macro are
replaced by an informally defined textual convention.

7. Any UNITS clause is removed from the definition of that object.

8. The IMPORTS statement references RFC1155-SMI and RFC-1212,
instead of SNMPv2-SMI.

9. For any object with a SYNTAX clause value of Counter32, the object’s
SYNTAX clause is changed to Counter.

10.For any object with a SYNTAX clause value of Gauge32, the object’s
SYNTAX clause is changed to Gauge.

11.For any object with a SYNTAX clause value of Unsinged32, the
object’s SYNTAX clause is changed to Unsigned. 



MIB DESIGNER USER GUIDE
SMI Conversion 69

12.Any object with a SYNTAX clause value of Counter64 is removed.

13.The value of an invocation of the TRAPE-TYPE macro is an INTE-
GER, not an OBJECT IDENTIFIER, and is be changed accordingly.
The ENTERPRISE clause is added. The OBJECTS clause is renamed
to the VARIABLES clause. The STATUS clause is removed.

14.For any object with a SYNTAX clause value of “BITS” is replaced by
“OCTET STRING” and a corresponding DEFVAL clause is con-
verted from enumerated bit names to a hex string.

9.2.2 Not Supported

1. If the object identifier of a notification type has a second to last sub-
identifier which is not zero, that notifcation type cannot be used with
SMIv1.

2. If a notification type refers to an object type with effective syntax of
Counter64, that notification type cannot be used with SMIv1.



MIB DESIGNER USER GUIDE
Correction70

10 Correction

MIB Designer provides some auto correction functions for ease of
correction of common SMIv2 errors.

10.1 Index Range Correction
A numeric value used for an index must not have a negative value because
a negative value cannot be represented by an OID sub-identifier.
Therefore, all syntax definitions used for an index value, must have a range
restriction which allows positive values only (including zero). This
correction adds missing range restrictions or changes existing to exclude
negative values for sub-index values.

10.2 INTEGER Usage Correction
The INTEGER type should be used for enumerations only in SMIv2.
Thus, this correction changes occurrences of INTEGER to Integer32
where it is not part of an enumeration definition.

10.3 Case Correction
The SMI standard specifies the case of the first letter of descriptors (see
“Descriptors start with a lower case letter whereas module names with an
upper case letter:” on page 53). 

Object identifiers have to start with a lower case letter, whereas
SEQUENCE and MIB module descriptors have to start with an upper case
letter, for example. Using an upper case letter as the first character of an
enumeration descriptor is also a common error. Here a lower case letter is
required.

The case correction function corrects the case of the first letter of
descriptors.

10.4 SMI Macro Import Correction
The SMI specification language is derived from ASN.1. Although it is not
ASN.1, it has inherited and used the ASN.1 MACRO elements. Because
of that, macro definitions in the SMI standard have to be imported when
used. The OBJECT-TYPE macro for instance, has to be imported from
RFC1155-SMI (SMIv1) or SNMPv2-SMI (SMIv2) respectively.

This auto-correction function removes unnecessary macro imports and



MIB DESIGNER USER GUIDE
Correction 71

adds any imports for used macros.



MIB DESIGNER USER GUIDE
Tools72

11 Tools

11.1 Extracting SMI from RFC Documents
SMI MIB module definitions are embedded in IETF RFC documents
which also includes page headers within the module text. This extraction
tool can read a RFC file or a directory of RFC files to extract any embedded
SMI modules and save them into new files. 

To Extract SMI Modules from RFCs: 
1. Choose Extract SMI from RFC from the Tools menu. 

2. Choose a source file or a source directory. 

If two directories are specified,
then the target file name is build
from the source file name by
appending „.smi“. If such a file
exists already, then „-<n>.smi“ is
appended where <n> is counted
up from 1 to 999 until such a file
does not exists.

3. Choose a target file if you have chosen a source file or choose a target
directory if have chosen a source directory.

4. Press the Ok button to run the extraction. A progress dialog will open
where you can also cancel the operation if more than one file is being
processed.

11.2 Tool Configuration
External tools like a PDF viewer, SNMP tool, or code generator program
like AgenPro 2 can be easily integrated with MIB Designer. Choose
Tools>Configure from the main menu to configure an external program
for usage with MIB Designer with the dialog shown on the left.

In the above example, four tools have been configured. Each tool is
listed by its title and gets populated in the Tools>Run Tool menu by the

Figure 33: Tool Configuration.



MIB DESIGNER USER GUIDE
Tools 73

same order as displayed in the configuration dialog. 
To add a new tool, press the Add button and the Tool Editor dialog will

be displayed where the tool can be defined by the following properties:

 A title (required), which is displayed under the Tools>Run Tool
menu.

 The path of the tool’s executable (required).

 An optional list of command line parameters. To allow a closer cou-
pling between MIB Designer and external tool, a set of macros can be
used in the parameter field. For an overview about available macros see
the table below.

 An optional working directory for the external tool.

MACRO Description

$MODULE_NAME This macro will be replaced by the currently 
edited MIB module name when the tool is 
executed.

$MODULE_AS_HTML_FILE[=<moduleName>] The current module (or the MIB module with 
the specified name after the optional = sign) is 
exported as a HTML file into a temporary 
file. The macro is then replaced by the file 
name of the temporary file on the tool’s 
command line.

$MODULE_AS_PDF_FILE[=<moduleName>] Same as above, except that the MIB module is 
exported as a PDF file.

$MODULE_AS_TXT_FILE[=<moduleName>] Same as above, except that the MIB module is 
exported as a plain text file.

$MODULE_AS_XML_FILE[=<moduleName>] Same as above, except that the MIB module is 
exported as a XML file.

$MODULE_AS_XSD_FILE[=<moduleName>] Same as above, except that the MIB module is 
exported as a XML schema file.

Table 1: Macros for the tool configuration.



MIB DESIGNER USER GUIDE
Tool Configuration74

To remove a tool from the configuration, select the tool in the list and press
the Remove button. To change the order of the tools in the run menu,
select a tool and press the Move Up or Move Down button.

The tables that follow provide a few example tool configurations that
might be helpful illustrate the capabilities of the tool integration interface.

 The PDF viewer tool will use Adobe® Acrobat® to view the cur-
rently edited MIB module in its PDF representation.

 The SNMP4JCLT Sub-Tree Browser walks the sub-tree speci-
fied by the object identifier of the selected node in MIB Designer’s
MIB tree by using GETBULK SNMPv2c requests. The target SNMP
agent is the localhost on port 161. The community used is “pub-

$MODULE_AS_OID2NAME_FILE[=<moduleName>] Same as above, except that the MIB module is 
exported as a text file where each line starts 
with an object identifier (OID) defined in the 
exported MIB module followed by an equal 
sign (=) and the name of the MIB object.

$REPOSITORY This macro is replaced by the path to the MIB 
repository of MIB Designer. This macro can 
be used to run command line versions of MIB 
Explorer and AgenPro.

$SELECTED_OID This macro is replaced by the object identifier 
of the currently selected node in the MIB tree 
of the edited MIB module. If the node does 
not have an OID (e.g. a textual convention) 
then “0.0” is inserted instead. 

$LICENSE This macro is replaced by the MIB Designer 
license code enclosed in double quotes for 
entering the license part of the SNMP4J-CLT 
-L license option.

$LICENSE_KEY This macro is replaced by the MIB Designer 
license key for entering the license key part of 
the SNMP4J-CLT -L license option.
To build the -L option completely use:
-L $LICENSE $LICENSE_KEY

MACRO Description

Table 1: Macros for the tool configuration.



MIB DESIGNER USER GUIDE
Tools 75

lic”. For more information on the command line parameters of
SNMP4J see the snmp4jclt_usage.txt file.

 On a Windows system, the Dump HOST-RESOURCES-MIB tool
dumps the text of the HOST-RESOURCES-MIB into the MIB
Designer tool log.

 The AGENT++ Stub Generation tool executes AgenPro with
the current MIB module name as the code generation project name.
Of course, one needs to create and save the project under that name by
using the AgenPro GUI before one can successfully run the tool.
When MIB Designer and the AgenPro project share the same MIB
repository, this tool definition automates the stub generation process. 

E

Title PDF Viewer

Program C:\Program Files\Adobe\Acrobat 
7.0\Acrobat\Acrobat.exe

Parameters $MODULE_AS_PDF_FILE

Working Directory

Table 2: Sample configuration for a PDF Viewer.

Title SNMP4JCLT Sub-Tree Browser

Program /usr/bin/java

Parameters
-jar SNMP4J-CLT.jar –c public -v 2c -L $LICENSE 
$LICENSE_KEY walk udp:127.0.0.1/161 $SELECTED_OID

Working Directory ~/snmp4jclt

Table 3: Example tool configuration for SNMP4JCLT sub-tree browsing. Note: You have to provide your MIB Designer 
license and key on first execution. The license has to be enclosed in double quotes. For more help run „-jar SNMP4-
CLT.jar help“.



MIB DESIGNER USER GUIDE
Tool Configuration76

Title Dump HOST-RESOURCES-MIB

Program C:\WINDOWS\SYSTEM32\CMD.EXE

Parameters /C type $MODULE_AS_TXT_FILE=HOST-RESOURCES-MIB

Working Directory

Table 4: Example tool configuration for dumping a MIB module to the console.

Title AGENT++ Stub Generation

Program /home/agentpp/agenpro-install/agenpro.sh

Parameters projects/$MODULE_NAME.prj

Working Directory /home/agentpp/agenpro-install

Table 5: Example tool configuration for generating stub code with AgenPro by using a project file named by the 
current MIB modules name.



MIB DESIGNER USER GUIDE
Tools 77

11.3 Tool Execution
To execute a tool, choose it from the Tools>Run Tools sub-menu. If there
are no items in the sub-menu, no tools have been defined yet. See section
“Tool Configuration” on page 72 for a description on how to configure
tools then. The first ten configured tools can be directly run by pressing
<Alt>+<1> through <Alt>+<9> and <Alt>+<0>. 

Tools are executed synchronously. Thus, MIB Designer will not
respond to key and mouse events until the executed tool as been
terminated. The output of the last tool run is displayed in the lower right
panel where MIB Designer also displays SMI checker error messages. If the
executed process (tool) generated any output on stdout, the output will be
displayed with blue foreground. If it generated output on stderr, then the
output will be displayed with orange foreground.



MIB DESIGNER USER GUIDE
Preferences78

12 Preferences

With the preferences dialog application wide settings can be defined and
the behavior of MIB Designer can be customized. The individual settings
are described in the following sections. By pressing the Save button any
changes made to the preferences will be applied (except Look&Feel
changes) and MIB Designer will then scan the MIB repository for available
MIB modules. You can continue work while scanning or close the progress
dialog if you do not want to wait until the scan is finished. 

12.1 General
The general preferences section provides three sections for MIB compiler,
MIB generation, and other settings. 

12.1.1 MIB Compiler

The number of errors recorded during MIB compilation for each MIB file
can be limited by the Maximum Errors / MIB File setting. If a MIB module
contains more than the specified number of errors, those additional errors
will not be displayed until either one of the displayed errors get fixed or the
value is increased.

12.1.2 Other Options

 Open MIB in a new Tab by default - When enabled, new MIB mod-
ules are opened in a new tab by default, otherwise they will be opened
in the current tab if that exists already.

 Revision control - Enables revision control, which prevents acciden-
tally modification of already released MIB objects (see section MIB
Maintenance and Revision Control).

Warn for Unsaved Changes - Warns if a changed MIB module is
closed or if MIB Designer is closed while there are changed MIB mod-
ules.

 Auto save changes of SMI Editor - Automatically save any changes
made in the SMI editor area when moving the selection in the MIB
tree to another node.



MIB DESIGNER USER GUIDE
Preferences 79

 Validate MIB syntax in background - Check MIB module syntax in
background periodically and whenever node/SMI editors save their
changes. 

Warn before overwriting files - Warns if MIB Designer tries to over-
write an existing file.

12.1.3 MIB Generation

The MIB Generation settings define how MIB modules are generated
from the data imported into MIB Designer and/or entered in the same. 

 Generate MIB Designer Comments - Adds ASN.1 comments for
object identifiers and UTC time values to generated MIB modules.
This option makes the MIB modules more readable and it is recom-
mended to activate this option.

 Generate OID Comments Inline - In order to save output lines, the
OID comments can be generated into the same line where the OID
value assignment is placed. Activating this option can lead to interop-
erability problems with third party MIB compilers that cannot handle
ASN.1 comment closing correctly.

 Automatically Import SMI Macros - Imports SMI macros like
OBJECT-TYPE, OBJECT-GROUP, etc. automatically from the
appropriate MIB modules, when a MIB module is checked or saved.

 Preserve Original Order of Imported Objects - Preserves the order of
MIB objects in a compiled MIB module file, when it is regenerated.
Subsequently added objects will be placed at the end of the MIB mod-
ule.

 Order Generated Objects by Type First - Ensures that the objects are
ordered by their type first. Within each category the order is deter-
mined by an eventually enabled preserve option (above) and the lexi-



MIB DESIGNER USER GUIDE
Repository80

cographic ordering of the object’s OID. The order of object type
categories is as follows: 

 MODULE-IDENTITY

 TEXTUAL-CONVENTION

 OBJECT-IDENTIFIER, OBJECT-TYPE, OBJECT-IDENTITY

 TRAP-TYPE, NOTIFICATION-TYPE

 OBJECT-GROUP

 NOTIFICATION-GROUP

 MODULE-COMPLIANCE

 AGENT-CAPABILITIES

12.2 Repository
The Repository setting defines the directory to store compiled MIB
modules, see also section “Selecting a MIB Repository” on page 7.

 Verify MIB repository on Save - If checked, when closing the Prefer-
ences dialog with Save then the specified MIB repository will be veri-
fied by trying to load all MIB modules therein. Any errors found will
be reported with an error dialog. No MIB module will be actually
loaded!

12.3 View

12.3.1 Look & Feel

The Look & Feel setting determines the overall appearance of MIB
Designer. There are several built-in look-and-feels that you can choose
from. MIB Designer needs to be restarted before changes will take effect.

For maximum interoperability with all operating systems, provides the
Kunstoff look-and-feel. By default the operating system default look-and-
feel is selected. 

 Use SMI object type specific icons - When activated (default), the
node icons displayed in the MIB tree reflect the type of the SMI object
represented by the node. See also “MIB-Tree Colors and Icons” on
page 40. When deactivated, the tree icons of the current Look & Feel
are used.



MIB DESIGNER USER GUIDE
Preferences 81

12.3.2 Other View Settings

  Font size of preview text - With the slider you can specify the relative
font size for the SMI preview window.

 Use n spaces instead of tabs - When displaying and exporting MIB
files tabulators are used by default to indent text. Instead of using tab-
ulators, the specified number of spaces can be used for indentation.

 Force using operating system default browser to view help online -
If JavaFX is available in the Java Runtime Environment running MIB
Designer, then the JavaFX browser is used and the locally installed
help is displayed using the Help->Contents... menu. By checking this
option, even then the operating system default Web browser will be
used to view the help online from https://agentpp.com/help/mds/
<version>. When an Internet connection is available this option can be
useful to get the latest help. The built-in JavaFX browser uses the
Internet proxy settings from “Internet Proxy” on page 83. 

12.4 Spell Checking
Since version 5.2, MIB Designer stores words or text snippets
automatically in its configuration properties file. This is true for any word
or text-snippet that have been globally ignored by using 

 Ignore All function of the Spell Checker dialog (see “Built-in Spell
Checking” on page 41).

 Ignore context menu of the quick fix pop-up menu on spelling errors
in text editors like the SMI Editor.

In the Spell Checking tab the ignored text snippets can be removed,
changed, and extended by additional exceptions. 

12.5 Defaults
For new object creation, default values can be specified for common
attributes of SMI objects. Specifying a default value can ease object
creation. Default values can be specified for the following attributes:

 Object name - Defines the default object name for new objects. It is
recommended to set this value to the mnemonic of your company or
organization. You will then only have to append the individual object
name when creating new objects.

 Object group - Defines a sub-string matching pattern for the default
object group assignment when creating new OBJECT-TYPE defini-
tions.



MIB DESIGNER USER GUIDE
Syntax Highlighting82

If there are more than one matching groups, then the first one with the
smallest lexicographic OID is used.
For example, if you use “Basic” here and your MIB module has an
OBJECT-GROUP definition with an object name “myMibBasic-
Group” then this object group will be assigned to new OBJECT-TYPE
definitions.

 Notification group - Defines a sub-string matching pattern for the
default notification group assignment when creating new NOTIFI-
CATION-TYPE definitions.
If there are more than one matching groups, then the first one with the
smallest lexicographic OID is used.

 OID increment - Some organizations prefer to leave holes in object
numbering to be able to insert objects at later time (otherwise they
could only be appended on the same level). The default is 1 which
leaves no holes.

 Syntax - The default syntax should be set to the syntax of the majority
of your MIB objects to facilitate editing, for example OCTET-
STRING.

 Access - The default access for new OBJECT-TYPE definitions.

12.6 Syntax Highlighting
The syntax highlighting settings defines if and with which colors SMI text
is to be highlighted when

1. using the MIB file editor

2. using SMI preview and navigation tab 

3. MIB modules are printed or exported to PDF. 

The MIB Designer default color and text style scheme can be restored by
pressing the Set Defaults button.

12.7 Printing
 Print colored - If checked, syntax highlighted text is printed with the

colors defined in “Syntax Highlighting” preferences. Otherwise only
the text styles defined therein are used.

 Print header - Prints the MIB module name as header.

 Print footer - Prints footer with print date and page number.

 Print line number - Prints line numbers.



MIB DESIGNER USER GUIDE
Preferences 83

12.8 Internet Proxy
With MIB Designer 5.0 and later, a Internet proxy can be configured for:

 Viewing MIB Designer help using with the built-in JavaFX browser.
See also “View” on page 80.

 Updating MIB Designer and notifying about new (free) updates and
upgrades, see “Updates and Upgrades” on page 3.

By default, MIB Designer uses the same settings as your operating system
for Internet proxy. There might be cases where the proxy settings of the
operating system are wrong, incompatible with Java, or otherwise not
accessible.

Then please switch off the check box Use system proxy and provide
the following parameter manually:

 Proxy Host:Port - The IP(v4/v6) address or the fully qualified domain
name of the Internet proxy host is configured by the first field.
In the second field, the TCP port is configured, which is typically 80,
8080, or 3128.

 No Proxy Hosts - A list of domain names or IP addresses, separated by
a pipe symbol (|) for which no proxy should be used. This should
include the at least localhost|127.*|[::1] to allow MIB
Designer’s Java Runtime services on the local host.

 Proxy server requires password - Check this option if the proxy you
want to use requires authentication using user name and password.

 Proxy User - The user name for the proxy authentication.

 Proxy Password - The password for the proxy authentication.
Note: The password will be stored in clear text in the MIB Designer con-
figuration file in your home directory.



MIB DESIGNER USER GUIDE
Trouble-Shooting84

13 Trouble-Shooting

This section provides information and guidance on how to approach the
following issues:

 License information is not accepted.

 MIB file does not compile.

 How to increase the maximum memory size for MIB Designer.

 MIB objects seem to be read-only.

 SMI compiler reports error 1000 without an error description.

 How to get support if MIB Designer hangs or otherwise does not
work as expected.

License Information Is Not Accepted
If you enter your license information and the license gets rejected with
“The current license information invalid!” then please check the following:

 Is the Java Runtime Environment installation of version 1.5 or later
and correctly installed? You can check this by running
java -version
from the command line.

 Use Copy&Paste to enter the license key value in order to avoid typing
errors. License keys are case sensitive.

 If you are using a temporary license then check the system time.

MIB File Does Not Compile
When a MIB file does not compile because of syntax errors then follow the
steps below to resolve the errors:

1. Look up the error code in section “Error Messages” on page 87.

2. Try to understand the error and correct it with the MIB editor
described in section “MIB File Editor” on page 46.

3. If you do not understand why MIB Designer reports an error then
consult section “MIB Design” on page 50 about common MIB design
and syntax errors.



MIB DESIGNER USER GUIDE
Trouble-Shooting 85

4. If there are too many errors to fix manually then you can try to com-
pile the MIB file with lenient error checking by using File>Import
MIB leniently. After you have successfully imported the MIB file, you
can then fix the module by using the MIB Designer object editors.
You can check a MIB module for syntax errors at any time by using
View>Check. 

5. If the steps above cannot solve your problem, ask for support at sup-
port@mibdesigner.com.

How To Increase the Maximum Memory Size
For most situations the default maximum memory size of the Java 2SE
Runtime Environment is absolutely sufficient. When you need to
compile several thousands of MIB files at once or if you are working
with very large MIB modules, then increasing the maximum memory
size above 256 MB can be necessary. 

To specify a non-default maximum memory size of 512MB for MIB
Designer, start it from the command line within the MIB Designer
installation directory with:

java -Xmx512m mds-<version>.jar

MIB Objects Seem To Be Read-Only
SMI objects represented by nodes with underlined node name are read-
only - to be precise - most attributes of those nodes are read-only. Such
objects are released objects. Released objects are protected by MIB
Designer against incompatible changes. 

If you are sure that a MIB module has not been released or used yet,
then you might unlock the whole module by choosing Extra>Unlock MIB.
For more details see section “Revision Control” on page 60.

SMI Compiler Reports Error 1000 Without Error Description
If error 1000 is reported without an error description, then an internal
error occured. This might be a bug, but it can also be caused because MIB
Designer ran out of memory. If you are unsure whether there is enough
memory available, you can open the About dialog from Help>About to
check the free memory.

If lack of memory can be ruled out as problem cause, then please
contact support by writing an email to support@mibdesigner.com. Please
specify the MIB Designer version and the operating system you are using.



MIB DESIGNER USER GUIDE
Trouble-Shooting86

Getting Help
If MIB Designer hangs or otherwise shows malfunction, detailed
information about the error can be found on the console of the MIB
Designer application which can be seen when running MIB Designer from
the command line using java -jar mds-<version>.jar.

To get help, please send a email to support@agentpp.com with the
following information:

 MIB Designer version number

 Java Runtime version and vendor

 Output from the console when the error occurred (see above).

 A brief description of the expected behavior and the actually observed
behavior. 



MIB DESIGNER USER GUIDE
Error Messages 87

14 Error Messages

The following table list the error messages of the MIB compiler. Most error
texts contain placeholders, like <X>, <Y>, etc., which are replaced by the
MIB compiler with values describing the context of the error. Please see the
description text for an explanation of those placeholders.
.

Error Number
Error Text 
Description & Hints for Error Recovery

0000 File open error: <X>.

The file <X> could not be read, please check access rights.

0010 The length of identifier <X> exceeds 64 characters (RFC2578 §3.1, §7.1.1, §7.1.4).

It is recommended to use only identifiers with a length of less than 32 characters for 
interoperability issues. Identifiers that exceed 64 characters in length must be avoided.

0050 Encountered lexical error at …

The encountered character is not allowed in a SMI MIB module. 

1000 Syntax error: Encountered “token1” at row r, column c, expected one of the following: 
...

The parser encountered a string it did not expect. Please look at the list of expected tokens 
carefully in order to determine the trouble cause. If the parser complains about a SMIv2 
keyword like MAX-ACCESS, please check whether the first statement after the IMPORTS 
clause is a MODULE-IDENTITY definition. This is a requirement for a SMIv2 MIB 
module (RFC2578 $3). 

1001 The DISPLAY-HINT clause value “token1” at row r, column c  is invalid (RFC2579 
§3.1)

The DISPLAY-HINT clause does not correspond to any of the allowed formats for 
INTEGER or OCTET STRING base types.



MIB DESIGNER USER GUIDE
Error Messages88

1002 The UTC time value “token1” at row r, column c does not match the mandatory for-
mat YYMMDDhhmmZ or YYYYMMDDhhmmZ (RFC2578 §2)

The UTC time value does not correspond to the format YYMMDDhhmmZ or 
YYYYMMDDhhmmZ where
YY - last two digits of year (only years between 1900-1999)
YYYY - last four digits of the year (any year)
MM - month (01 through 12)
DD - day of month (01 through 31)
hh - hours (00 through 23)
mm - minutes (00 through 59)
Z - denotes GMT (the ASCII character Z)

1050 The clause <X> is not allowed within this context.

There are several clauses in SMI that are optional, but if specified those clauses need to be 
consistent with other clauses in the object definition. Examples for such clauses are the 
ACCESS, MIN-ACCESS, and SYNTAX clauses in MODULE-COMPLIANCE con-
structs, which must not be present for variations of NOTIFICATION-TYPEs.

1100 Imported MIB module <X> unknown.

The MIB module <X> could not be found in the MIB repository and neither in the MIB 
modules being compiled. Check whether to MIB module name is not misspelled (this is 
often the case for older RFC MIBs). 

1101 Imported MIB module <X> contains a circular import.

The MIB module <X> imports from a module that either imports itself from <X> or any 
other module in the import chain imports from a preceding module. 

1102 MIB module <X> is imported more than once.

The ASN.1 rules about IMPORTS that SMI is based on require that an import source is 
defined not more than once in a module. 

1110 <X> imported from MIB module <Y> must be imported from <Z> instead.

For historical reasons, SMI requires to import the MACRO definitions SMI is based on 
from some ASN.1 modules. For SMIv1 and SMIv2 it is defined which MACRO (con-
struct) is imported from which ASN.1 module. Since those ASN.1 modules (e.g. 
SNMPv2-SMI) are not SMI themselves, the MACRO definitions have to be removed in 
order to be able to compile them. 



MIB DESIGNER USER GUIDE
Error Messages 89

1111 Missing import statement for <X> (RFC2578 §3.2).

To reference an external object, the IMPORTS statement must be used to identify both the 
descriptor and the module in which the descriptor is defined, where the module is identi-
fied by its ASN.1 module name.

1112 Imported object <X> is not defined in MIB module <Y>.

Use the Edit>Search MIB Repository to search for the MIB module that defines <X>.

1113 Object <X> is imported twice from MIB module <Y>.

An object definition shall only be imported once from a MIB module.

1114 <X> cannot be imported (RFC2578 §3.2).

Notification and trap type definitions as well as SEQUENCE constructs cannot be 
imported by other MIB modules.

1150 Wrong module order within file.

The MIB file that failed to compile contains more than one MIB module and the order of 
those MIB modules does not correspond with their import dependencies.

1200 The SYNTAX clause of the columnar OBJECT-TYPE definition <X> does not 
match with the SYNTAX clause of the corresponding SEQUENCE definition.

The object <X>’s syntax differs in a SEQUENCE definition from its OBJECT-TYPE 
definition.

1202 The OBJECT-TYPE <X> has inconsistent maximum access (RFC2578 §7.3).

An object <X> has a MAX-ACCESS or ACCESS clause that does not match its context 
(RFC2578 §7.3). For example, a columnar object must not have a MAX-ACCESS value 
of “read-write” if any other columnar object in the table has a MAX-ACCESS value of 
“read-create”.

1210 The conditionally GROUP clause <X> must be absent from the corresponding 
MANDATORY-GROUPS clause (RFC2580 §5.4.2).

A conditionally group cannot be mandatory at the same time!



MIB DESIGNER USER GUIDE
Error Messages90

1211 OBJECT variation <X> must be included in a GROUP or MANDATORY-
GROUPs reference (RFC2580 §5.4.2).

The object reference <X> must be part of any object group specified as conditionally or 
mandatory for this compliance module.

1212 Only ‘not-implemented’ is applicable for the ACCESS clause of the notification type 
variation <X> (RFC2580 §6.5.2.3).

If the notification has to be implemented, then the ACCESS clause should be removed.

1220 The CREATION-REQUIRES clause of variation <X> must only be present for con-
ceptual row definitions (RFC2580 §6.5.2.4).

The CREATION-REQUIRES clause must not be present unless the object named in the 
correspondent VARIATION clause is a conceptual row, i.e., has a syntax which resolves to 
a SEQUENCE containing columnar objects.

1221 Only columnar object type definitions with access read-create may be present in the 
CREATION REQUIRES clause of variation <X> (RFC2580 §6.5.2.4).

Other objects and columns cannot be created and thus they cannot participate in a row 
creation.

1500 Unresolved syntax reference <X>

The syntax (data type) <X> is not defined in the parsed MIB module and it is not 
imported from another MIB module. Use the Edit>Search MIB Repository function to 
search the MIB repository for object name <X> and add the corresponding IMPORT 
FROM clause for <X>.

1501 Unresolved object reference <X>

The object name <X> is not defined in the parsed MIB module and it is not imported 
from another MIB module. Use the Edit>Search MIB Repository function to search the 
MIB repository for object name <X> and add the corresponding IMPORT FROM clause 
for <X>.



MIB DESIGNER USER GUIDE
Error Messages 91

1502 The object <X> must be defined or imported (RFC2578 §3.2).

The object <X> is not defined in the parsed MIB module and it is not imported from 
another MIB module. Use the Edit>Search MIB Repository function to search the MIB 
repository for object name <X> and add the corresponding IMPORT FROM clause for 
<X>.

1600 The object definition <X> references a <Y> definition, expected a reference to an 
OBJECT-TYPE conceptual row definition instead.

The AUGMENTS clause, for example, requires that the referenced object definition is a 
conceptual table definition, i.e., has a syntax which resolves to a SEQUENCE containing 
columnar objects.

1601 The GROUP clause <X> references a <Y> definition, expected a reference to an 
OBJECT-GROUP or NOTIFICATION-GROUP instead (RFC2580 §5.4.2).

The GROUP clause requires a reference to an object group definition.

1602 The object reference <X> points to a <Y> definition, expected a reference to an 
OBJECT-TYPE or NOTIFICATION-TYPE definition instead.

The VARIATION clause, for example, requires a reference to an OBJECT-TYPE or a 
NOTIFICATION-TYPE definition.

1700 Object reference with wrong type: <X>, expected type was <Y>, but found <Z> 
instead.

The reference to object <X> must be of type <Y> but it is of type <Z>.

1800 The SEQUENCE clause of the table entry definition <X> does not match the order 
or number of objects registered for that table at entry <Y>.

The column references in the SEQUENCE definition of a table must be lexicographically 
ordered by their object-identifiers. The object name Y is the name of the first object refer-
ence in the SEQUENCE definition that does not match the order of columnar objects of 
that table.

1801 The SEQUENCE definition for table entry <X> does not match with the number of 
child objects of that node.

All objects registered below a table entry node must be included in the SEQUENCE defi-
nition of that table entry.



MIB DESIGNER USER GUIDE
Error Messages92

1810 The OBJECT-TYPE <X> has an invalid index definition (RFC2578 §7.7).

The OBJECT-TYPE <X> has an invalid INDEX clause, i.e., an empty clause.

1811 The OBJECT-TYPE <X> has an invalid index definition because <Y> may be nega-
tive (RFC2578 §7.7).

Index values have to be encoded as OID suffixes on the wire. Since OID sub-identifiers are 
32-bit unsigned integer values, negative values cannot be encoded over the wire. See 
RFC2578 §7.7 for more details.

1812 The OBJECT-TYPE <X> has an invalid index definition (RFC2578 §7.7) because 
the minimum total index length exceeds 128 which is the maximum SNMP OID 
length.

Instances of this OBJECT-TYPE <X> can never be accessed through the SNMP protocol, 
because the identifying OID is longer than 128 sub-identifiers and thus cannot be repre-
sented in SNMP.

1813 The OBJECT-TYPE <X> has an invalid index definition (RFC2578 §7.7) because 
the sub-index with the IMPLIED length can have a zero length.

Implied variable length sub-index values cannot be represented.

1850 The OBJECT-TYPE <X> has invalid index definition, because <Y> is not a columnar 
object (RFC2578 §7.7).

The OBJECT-TYPE <X> has an invalid INDEX clause, because <Y> does not refer to a 
columnar OBJECT-TYPE definition. An OBJECT-TYPE is columnar object, if it is part 
of a table definition. See RFC2578 §7.7 for more details.

1851 OBJECT-TYPE definition <X> is a scalar and therefore it must not have an INDEX 
clause (RFC2578 §7.7).

Scalar objects have a fixed instance identifier (“index”) of ‘0’, thus an INDEX clause must 
not be specified.

2000 Duplicate object registration of <X> after <Y> for the object ID <Z> (RFC2578 
§3.6).

Once an object identifier has been registered it must not be reregistered. An object registra-
tion is any object definition other than OBJECT-IDENTIFIER.



MIB DESIGNER USER GUIDE
Error Messages 93

2010 Illegal object registration of <X> under <Y> for the object ID <Z>.

For example, it is not legal to register objects in the sub-tree of an OBJECT-TYPE registra-
tion.

3000 The default value of OBJECT-TYPE <X> is out of range (RFC2578 §7.9).

The values specified in a DEFVAL clause have to be valid values for the corresponding 
data type syntax.

3001 The size of the default value of OBJECT-TYPE <X> is out of range (RFC2578 §7.9).

The length of the specified octet string exceeds the SIZE constraints defined for the corre-
sponding data type syntax.

3002 The format of the default value of OBJECT-TYPE <X> does not match its syntax 
(RFC2578 §7.9).

The value <X> is not properly defined for the corresponding syntax.

3003 A DEFVAL clause is not allowed for OBJECT-TYPE <X> which has a base syntax of 
Counter (Counter32 or Counter64) (RFC2578 §7.9).

4000 The syntax definition of the object <X> is not a valid refinement of its base syntax 
(RFC2578 §9).

A refinement must not extend the range of valid values for a data type.

4010 The range restriction is invalid because …

The lower bound (first value) of range restriction must be less or equal than the corre-
sponding upper bound (second value). In addition, bounds for unsigned values cannot be 
negative.

4100 The TEXTUAL-CONVENTION definition <X> must not have a DISPLAY-HINT 
clause because its SYNTAX is OBJECT IDENTIFIER, IpAddress, Counter32, 
Counter64, or any enumerated syntax (BITS or INTEGER) (RFC2579 §3.1)

Only textual conventions for INTEGER and OCTET STRING base types may have 
a DISPLAY-HINT clause.



MIB DESIGNER USER GUIDE
Error Messages94

4101 The DISPLAY-HINT clause value “token1” of the TEXTUAL-CONVENTION 
definition <X> is not compatible with the used SYNTAX (RFC2579 §3.1)

The integer DISPLAY-HINT format must be used with the INTEGER base type 
only whereas the string DISPLAY-HINT format must be used with OCTET 
STRING base type only.

5000 The object definition <X> must be included in an OBJECT-GROUP or a NOTIFI-
CATION-GROUP definition respectively (RFC2580 §3.1 and §4.1).

This requirement ensures that compliance statements for a MIB module can be written. 

5100 Object group <X> must not reference OBJECT-TYPE <Y> which has a MAX-
ACCESS clause of not-accessible (RFC2580 §3.1).

Only accessible objects and notifications may be included in object groups.

5101 The OBJECTS clause of NOTIFICATION-TYPE <X> must not reference 
OBJECT-TYPE <Y> which has a MAX-ACCESS clause of 'not-accessible' 
(RFC2578 §8.1).

It is impossible for an agent to implement View Access Control Model (VACM) correctly 
and sending an object which has a maximum access of ‘not-accessible’.

6000 The PIB-INDEX clause of OBJECT-TYPE definition <X> does not reference a 
columnar object with an 'InstanceId' syntax (RFC3159 §7.5)

6001 The PIB-TAG clause present in <X> must be absent because the SYNTAX is not 
'TagReferenceId' (RFC3159 §7.11)

6002 The PIB-REFERENCES clause present in <X> must be absent because the SYNTAX 
is not 'ReferenceId' (RFC3159 §7.10)

6003 A PIB-TAG clause must be present in <X> because its SYNTAX is 'TagReferenceId' 
(RFC3159 §7.11)

6004 The PIB-REFERENCES must be present in <X> because its SYNTAX is 
'ReferenceId' (RFC3159 §7.10)

6005 The UNIQUENESS clause of OBJECT-TYPE definition <X> must not contain the 
attribute <Y> referenced in the PIB-INDEX clause (RFC3159 §7.9)



MIB DESIGNER USER GUIDE
Error Messages 95

Table 6: MIB compiler error 
messages and descriptions.

6006 The UNIQUENESS clause of OBJECT-TYPE definition <X> must not contain the 
attribute <Y> more than once (RFC3159 §7.9)

6007 The INSTALL-ERRORS clause of OBJECT-TYPE definition <X> has an invalid 
error number <N> for label <L> which is out of the range 0-65535 (RFC3159 §7.4)



MIB DESIGNER USER GUIDE
Regular Expression Syntax96

15 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it. Thus,
a regular expression can be used to check whether an input string is
matched by that expression.

Regular expressions can be concatenated to form new regular
expressions; if A and B are both regular expressions, then AB is also a
regular expression. If a string p matches A and another string q matches B,
the string pq will match AB. Thus, complex expressions can easily be
constructed from simpler primitive expressions like the ones described
here. A brief explanation of the format of regular expressions borrowed
from the Python Library Reference follows. 

Regular expressions can contain both special and ordinary characters.
Most ordinary characters, like "A", "a", or "0", are the simplest regular
expressions; they simply match themselves. You can concatenate ordinary
characters, so last matches the string 'last'. (In the rest of this section, we'll
write RE's in this special style, usually without quotes, and strings to be
matched 'in single quotes'.) 

Some characters, like "|" or "(", are special. Special characters either
stand for classes of ordinary characters, or affect how the regular
expressions around them are interpreted. 

The special characters are: 
"." (Dot.) In the default mode, this matches any character 

except a newline. If the DOTALL flag has been specified, 
this matches any character including a newline. 

"^" (Caret.) Matches the start of the string, and in MULTI-
LINE mode also matches immediately after each newline. 

"$" Matches the end of the string, and in MULTILINE mode 
also matches before a newline. foo matches both 'foo' 
and 'foobar', while the regular expression foo$ matches 
only 'foo'. 

"*" Causes the resulting RE to match 0 or more repetitions of 
the preceding RE, as many repetitions as are possible. ab* 
will match 'a', 'ab', or 'a' followed by any number of 'b's. 

"+" Causes the resulting RE to match 1 or more repetitions of 
the preceding RE. ab+ will match 'a' followed by any 
non-zero number of 'b's; it will not match just 'a'. 

"?" Causes the resulting RE to match 0 or 1 repetitions of the 
preceding RE. ab? will match either 'a' or 'ab'. 



MIB DESIGNER USER GUIDE
Regular Expression Syntax 97

*?,+?, 
?? 

The "*", "+", and "?" qualifiers are all greedy; they match 
as much text as possible. Sometimes this behaviour isn't 
desired; if the RE <.*> is matched against 
'<H1>title</H1>', it will match the entire string, 
and not just '<H1>'. Adding "?" after the qualifier 
makes it perform the match in non-greedy or minimal fash-
ion; as few characters as possible will be matched. Using 
.*? in the previous expression will match only '<H1>'. 

{m,n} Causes the resulting RE to match from m to n repetitions 
of the preceding RE, attempting to match as many repeti-
tions as possible. For example, a{3,5} will match from 3 
to 5 "a" characters. Omitting n specifies an infinite upper 
bound; you can't omit m. 

{m,n}? Causes the resulting RE to match from m to n repetitions 
of the preceding RE, attempting to match as few repeti-
tions as possible. This is the non-greedy version of the pre-
vious qualifier. For example, on the 6-character string 
'aaaaaa', a{3,5} will match 5 "a" characters, while 
a{3,5}? will only match 3 characters. 

"\" Either escapes special characters (permitting you to match 
characters like "*", "?", and so forth), or signals a special 
sequence; special sequences are discussed below. 

[] Used to indicate a set of characters. Characters can be 
listed individually, or a range of characters can be indi-
cated by giving two characters and separating them by a "-
". Special characters are not active inside sets. For example, 
[akm$] will match any of the characters "a", "k", "m", 
or "$"; [a-z] will match any lowercase letter, and [a-
zA-Z0-9] matches any letter or digit. Character classes 
such as \w or \S (defined below) are also acceptable 
inside a range. If you want to include a "]" or a "-" inside 
a set, precede it with a backslash, or place it as the first 
character. The pattern []] will match ']', for example. 
You can match the characters not within a range by com-
plementing the set. This is indicated by including a "^" as 
the first character of the set; "^" elsewhere will simply 
match the "^" character. For example, [^5] will match 
any character except "5". 

"|" A|B, where A and B can be arbitrary REs, creates a regular 
expression that will match either A or B. This can be used 
inside groups (see below) as well. To match a literal "|", 
use \|, or enclose it inside a character class, as in [|]. 



MIB DESIGNER USER GUIDE
Regular Expression Syntax98

(...) Matches whatever regular expression is inside the paren-
theses, and indicates the start and end of a group; the con-
tents of a group can be retrieved after a match has been 
performed (for example in a substitution expression), and 
can be matched later in the string with the \number spe-
cial sequence, described below. To match the literals "(" or 
"')", use \( or \), or enclose them inside a character 
class: [(] [)]. 

(?...) This is an extension notation (a "?" following a "(" is not 
meaningful otherwise). The first character after the "?" 
determines what the meaning and further syntax of the 
construct is. Extensions usually do not create a new group; 
(?P<name>...) is the only exception to this rule. Fol-
lowing are the currently supported extensions. 

(?imsx) (One or more letters from the set "i", "L", "m", "s", "x".) 
The group matches the empty string; the letters set the 
corresponding flags for the entire regular expression:
i - Do case-insensitive pattern matching.
m - Treat string as multiple lines. That is, change "^" and 
"$" from matching the start or end of the string to match-
ing the start or end of any line anywhere within the string.
s - Treat string as single line. That is, change "." to match 
any character whatsoever, even a newline, which normally 
it would not match. 
The /s and /m modifiers both override the $* setting. That 
is, no matter what $* contains, /s without /m will force 
"^" to match only at the beginning of the string and "$" to 
match only at the end (or just before a newline at the end) 
of the string. Together, as /ms, they let the "." match any 
character whatsoever, while yet allowing "^" and "$" to 
match, respectively, just after and just before newlines 
within the string.
Extend your pattern's legibility by permitting whitespace 
and comments.

(?:...) A non-grouping version of regular parentheses. Matches 
whatever regular expression is inside the parentheses, but 
the substring matched by the group cannot be retrieved 
after performing a match or referenced later in the pattern. 

(?#...) A comment; the contents of the parentheses are simply 
ignored. 

(?=...) Matches if ... matches next, but doesn't consume any of 
the string. This is called a lookahead assertion. For exam-
ple, Isaac (?=Asimov) will match 'Isaac ' only 
if it's followed by 'Asimov'. 



MIB DESIGNER USER GUIDE
Regular Expression Syntax 99

The special sequences consist of "\" and a character from the list below. If
the ordinary character is not on the list, then the resulting RE will match
the second character. For example, \$ matches the character "$".

(?!...) Matches if ... does not match next. This is a negative 
lookahead assertion. For example, Isaac (?!Asi-
mov) will match 'Isaac ' only if it's not followed by 
'Asimov'. 

\number Matches the contents of the group of the same number. 
Groups are numbered starting from 1. For example, (.+) 
\1 matches 'the the' or '55 55', but not 'the 
end' (note the space after the group). This special 
sequence can only be used to match one of the first 99 
groups. If the first digit of number is 0, or number is 3 octal 
digits long, it will not be interpreted as a group match, but 
as the character with octal value number. Inside the "[" 
and "]" of a character class, all numeric escapes are treated 
as characters. 

\A Matches only at the start of the string. 
\b Matches the empty string, but only at the beginning or end 

of a word. A word is defined as a sequence of alphanumeric 
characters, so the end of a word is indicated by whitespace 
or a non-alphanumeric character. Inside a character range, 
\b represents the backspace character. 

\B Matches the empty string, but only when it is not at the 
beginning or end of a word. 

\d Matches any decimal digit; this is equivalent to the set 
[0-9]. 

\D Matches any non-digit character; this is equivalent to the 
set [^0-9]. 

\s Matches any whitespace character; this is equivalent to the 
set [ \t\n\r\f\v]. 

\S Matches any non-whitespace character; this is equivalent 
to the set [^ \t\n\r\f\v]. 

\w Matches any alphanumeric character; this is equivalent to 
the set [a-zA-Z0-9_].

\W Matches any non-alphanumeric character; this is equiva-
lent to the set [^a-zA-Z0-9_].

\Z Matches only at the end of the string. 
\\ Matches a literal backslash.



MIB DESIGNER USER GUIDE
Regular Expression Syntax100


	1 System Requirements
	2 Installation
	2.1 Using Native Installer
	2.2 Other Platforms
	2.3 Starting MIB Designer
	2.4 Updates and Upgrades
	2.5 Uninstall

	3 What Is MIB Designer?
	4 Setup
	4.1 Selecting a MIB Repository
	4.2 Compiling MIB Files
	4.3 Deleting MIB Modules

	5 Using MIB Designer
	5.1 Creating a New MIB
	5.1.1 New MIB Wizard

	5.2 Editing a MIB
	5.2.1 Import
	5.2.2 Add
	5.2.3 Copy
	5.2.4 Cut
	5.2.5 Paste
	5.2.6 Edit
	5.2.7 ASN.1 Comments
	5.2.8 Moving Objects
	5.2.9 Renumbering Objects
	5.2.10 MIB Object Editing Dialogs
	5.2.11 Object Identifier
	5.2.12 Object Identity
	5.2.13 Module Identity
	5.2.14 Textual-Convention
	5.2.15 Object Type
	5.2.16 Table
	5.2.17 Notification
	5.2.18 Group
	5.2.19 Module Compliance
	5.2.20 Agent Capabilities
	5.2.21 MIB-Tree Colors and Icons

	5.3 Built-in Spell Checking
	5.4 Finding MIB Objects
	5.4.1 Search MIB Repository for Importing Objects
	5.4.2 Search MIB Repository for References
	5.4.3 Navigate Between MIB Objects
	5.4.4 Refactor Object Names and Descriptions

	5.5 MIB Validation
	5.6 Saving and Exporting a MIB
	5.6.1 Exporting MIBs to XML, HTML, XSD, PDF, and Text

	5.7 Printing a MIB module
	5.8 MIB File Editor
	5.8.1 Checking a MIB File
	5.8.2 Saving and Compiling a MIB File
	5.8.3 Auto Syntax Completion
	5.8.4 Printing with Syntax Highlighting
	5.8.5 Search and Replace by Regular Expressions


	6 MIB Design
	7 Revision Control
	8 MIB Comparison
	8.1 Comparing Two MIB Modules
	8.2 Clearing a Comparison

	9 SMI Conversion
	9.1 SMIv1 to SMIv2
	9.1.1 Fully Automated
	9.1.2 Manual Intervention or Review Needed
	9.1.3 Not Supported

	9.2 SMIv2 to SMIv1
	9.2.1 Fully Automated
	9.2.2 Not Supported


	10 Correction
	10.1 Index Range Correction
	10.2 INTEGER Usage Correction
	10.3 Case Correction
	10.4 SMI Macro Import Correction

	11 Tools
	11.1 Extracting SMI from RFC Documents
	11.2 Tool Configuration
	11.3 Tool Execution

	12 Preferences
	12.1 General
	12.1.1 MIB Compiler
	12.1.2 Other Options
	12.1.3 MIB Generation

	12.2 Repository
	12.3 View
	12.3.1 Look & Feel
	12.3.2 Other View Settings

	12.4 Spell Checking
	12.5 Defaults
	12.6 Syntax Highlighting
	12.7 Printing
	12.8 Internet Proxy

	13 Trouble-Shooting
	14 Error Messages
	15 Regular Expression Syntax

